File size: 21,388 Bytes
f365f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import gradio as gr
import inference_2 as inference
import os
import sys
import asyncio

# Windows compatibility fix for asyncio
if sys.platform == "win32":
    asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())

# ChatGPT-inspired CSS with Dark Theme
custom_css = """

/* ChatGPT-style global container */

.gradio-container {

    font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif !important;

    background: #212121 !important;

    color: #ffffff !important;

    margin: 0 !important;

    padding: 0 !important;

    height: 100vh !important;

}



/* ChatGPT-style layout */

.chat-layout {

    display: flex !important;

    height: 100vh !important;

}



/* ChatGPT-style sidebar */

.chat-sidebar {

    width: 260px !important;

    background: #171717 !important;

    border-right: 1px solid #2e2e2e !important;

    padding: 1rem !important;

    overflow-y: auto !important;

    flex-shrink: 0 !important;

}



.sidebar-header {

    padding: 1rem 0 !important;

    border-bottom: 1px solid #2e2e2e !important;

    margin-bottom: 1rem !important;

}



.sidebar-title {

    font-size: 1.1rem !important;

    font-weight: 600 !important;

    color: #ffffff !important;

    margin: 0 !important;

}



/* Sidebar menu items */

.sidebar-item {

    display: flex !important;

    align-items: center !important;

    padding: 0.75rem 1rem !important;

    margin: 0.25rem 0 !important;

    border-radius: 8px !important;

    cursor: pointer !important;

    transition: background-color 0.2s ease !important;

    color: #b4b4b4 !important;

    text-decoration: none !important;

    width: 100% !important;

    border: none !important;

    background: transparent !important;

    text-align: left !important;

}



.sidebar-item:hover {

    background: #2a2a2a !important;

    color: #ffffff !important;

}



.sidebar-item.active {

    background: #2a2a2a !important;

    color: #ffffff !important;

}



/* ChatGPT-style main content */

.chat-main {

    flex: 1 !important;

    background: #212121 !important;

    overflow-y: auto !important;

    display: flex !important;

    flex-direction: column !important;

}



/* ChatGPT-style header */

.chat-header {

    background: #2a2a2a !important;

    border-bottom: 1px solid #2e2e2e !important;

    padding: 1rem 2rem !important;

    flex-shrink: 0 !important;

}



.chat-title {

    font-size: 1.2rem !important;

    font-weight: 600 !important;

    color: #ffffff !important;

    margin: 0 !important;

}



.chat-subtitle {

    color: #b4b4b4 !important;

    font-size: 0.9rem !important;

    margin-top: 0.25rem !important;

}



/* ChatGPT-style content area */

.chat-content {

    flex: 1 !important;

    padding: 2rem !important;

    max-width: 800px !important;

    margin: 0 auto !important;

    width: 100% !important;

    box-sizing: border-box !important;

}



/* ChatGPT-style cards */

.chat-card {

    background: #2a2a2a !important;

    border: 1px solid #2e2e2e !important;

    border-radius: 12px !important;

    padding: 1.5rem !important;

    margin: 1rem 0 !important;

    transition: border-color 0.2s ease !important;

}



.chat-card:hover {

    border-color: #404040 !important;

}



/* ChatGPT-style inputs */

.chat-input {

    background: #171717 !important;

    border: 1px solid #2e2e2e !important;

    border-radius: 8px !important;

    padding: 1rem !important;

    color: #ffffff !important;

    font-size: 0.9rem !important;

    transition: border-color 0.2s ease !important;

}



.chat-input:focus {

    border-color: #0ea5e9 !important;

    box-shadow: 0 0 0 3px rgba(14, 165, 233, 0.1) !important;

    outline: none !important;

}



/* ChatGPT-style buttons */

.chat-button {

    background: #0ea5e9 !important;

    color: #ffffff !important;

    border: none !important;

    border-radius: 8px !important;

    padding: 0.75rem 1.5rem !important;

    font-weight: 500 !important;

    font-size: 0.9rem !important;

    cursor: pointer !important;

    transition: all 0.2s ease !important;

    display: inline-flex !important;

    align-items: center !important;

    gap: 0.5rem !important;

}



.chat-button:hover {

    background: #0284c7 !important;

    transform: translateY(-1px) !important;

    box-shadow: 0 4px 12px rgba(14, 165, 233, 0.3) !important;

}



/* ChatGPT-style output */

.chat-output {

    background: #171717 !important;

    border: 1px solid #2e2e2e !important;

    border-radius: 8px !important;

    padding: 1rem !important;

    font-family: 'SF Mono', Monaco, 'Cascadia Code', 'Roboto Mono', Consolas, 'Courier New', monospace !important;

    font-size: 0.85rem !important;

    line-height: 1.5 !important;

    color: #ffffff !important;

    min-height: 200px !important;

    white-space: pre-wrap !important;

}



/* Upload area styling */

.upload-area {

    border: 2px dashed #2e2e2e !important;

    border-radius: 8px !important;

    padding: 2rem !important;

    text-align: center !important;

    background: #171717 !important;

    transition: all 0.2s ease !important;

    color: #b4b4b4 !important;

}



.upload-area:hover {

    border-color: #0ea5e9 !important;

    background: #1a1a1a !important;

}



/* ChatGPT-style accordion */

.chat-accordion {

    background: #2a2a2a !important;

    border: 1px solid #2e2e2e !important;

    border-radius: 8px !important;

    margin-top: 1rem !important;

}



.chat-accordion summary {

    padding: 1rem !important;

    font-weight: 500 !important;

    cursor: pointer !important;

    background: #2a2a2a !important;

    border-radius: 8px 8px 0 0 !important;

    color: #ffffff !important;

}



.chat-accordion[open] summary {

    border-bottom: 1px solid #2e2e2e !important;

}



/* Responsive design */

@media (max-width: 768px) {

    .chat-layout {

        flex-direction: column !important;

    }

    

    .chat-sidebar {

        width: 100% !important;

        height: auto !important;

        border-right: none !important;

        border-bottom: 1px solid #2e2e2e !important;

    }

    

    .chat-content {

        padding: 1rem !important;

    }

}

"""

# Create the ChatGPT-inspired Gradio interface
with gr.Blocks(
    theme=gr.themes.Base(
        primary_hue="blue",
        secondary_hue="gray",
        neutral_hue="gray"
    ),
    css=custom_css,
    title="DeepSecure AI"
) as app:
    
    # ChatGPT-style layout
    with gr.Row(elem_classes="chat-layout"):
        
        # Sidebar
        with gr.Column(elem_classes="chat-sidebar", scale=0):
            with gr.Column(elem_classes="sidebar-header"):
                gr.HTML('<div class="sidebar-title">πŸ›‘οΈ DeepSecure AI</div>')
            
            # Current analysis type state
            analysis_type = gr.State("video")
            
            # Sidebar menu
            video_btn_sidebar = gr.Button(
                "🎬 Video Analysis", 
                elem_classes="sidebar-item active",
                variant="secondary",
                size="sm"
            )
            audio_btn_sidebar = gr.Button(
                "🎡 Audio Analysis", 
                elem_classes="sidebar-item",
                variant="secondary", 
                size="sm"
            )
            image_btn_sidebar = gr.Button(
                "πŸ–ΌοΈ Image Analysis", 
                elem_classes="sidebar-item",
                variant="secondary",
                size="sm"
            )
            
            # Model info in sidebar
            with gr.Accordion("πŸ“Š Model Stats", open=False, elem_classes="chat-accordion"):
                gr.HTML("""

                    <div style="color: #b4b4b4; font-size: 0.8rem; line-height: 1.4;">

                        <strong>Video:</strong> 96.2% accuracy<br>

                        <strong>Audio:</strong> 94.8% accuracy<br>

                        <strong>Image:</strong> 97.1% accuracy

                    </div>

                """)
        
        # Main content area
        with gr.Column(elem_classes="chat-main", scale=1):
            
            # Header
            with gr.Row(elem_classes="chat-header"):
                current_title = gr.HTML('<div class="chat-title">Video Deepfake Detection</div>')
                current_subtitle = gr.HTML('<div class="chat-subtitle">Upload a video file to analyze for potential deepfake manipulation</div>')
            
            # Content area
            with gr.Column(elem_classes="chat-content"):
                
                # Dynamic content based on selected analysis type
                with gr.Group():
                    
                    # Video Analysis Content
                    video_content = gr.Column(visible=True)
                    with video_content:
                        with gr.Column(elem_classes="chat-card"):
                            gr.Markdown("### Upload Video File")
                            gr.Markdown("*Drag and drop or click to browse β€’ Supported: MP4, AVI, MOV, MKV*")
                            
                            video_input = gr.Video(
                                label="",
                                elem_classes="upload-area",
                                height=250
                            )
                            
                            video_btn = gr.Button(
                                "πŸ” Analyze Video",
                                elem_classes="chat-button",
                                size="lg",
                                variant="primary"
                            )
                            
                            video_output = gr.Textbox(
                                label="Analysis Results",
                                elem_classes="chat-output",
                                lines=10,
                                placeholder="Upload a video and click 'Analyze Video' to see detailed results here...",
                                interactive=False
                            )
                            
                            # Video examples
                            video_examples = []
                            if os.path.exists("videos/aaa.mp4"):
                                video_examples.append("videos/aaa.mp4")
                            if os.path.exists("videos/bbb.mp4"):
                                video_examples.append("videos/bbb.mp4")
                            
                            if video_examples:
                                with gr.Accordion("πŸ“ Try Sample Videos", open=False, elem_classes="chat-accordion"):
                                    gr.Examples(
                                        examples=video_examples,
                                        inputs=video_input,
                                        label="Sample videos for testing:"
                                    )
                    
                    # Audio Analysis Content
                    audio_content = gr.Column(visible=False)
                    with audio_content:
                        with gr.Column(elem_classes="chat-card"):
                            gr.Markdown("### Upload Audio File")
                            gr.Markdown("*Drag and drop or click to browse β€’ Supported: WAV, MP3, FLAC, M4A*")
                            
                            audio_input = gr.Audio(
                                label="",
                                elem_classes="upload-area"
                            )
                            
                            audio_btn = gr.Button(
                                "πŸ” Analyze Audio",
                                elem_classes="chat-button",
                                size="lg",
                                variant="primary"
                            )
                            
                            audio_output = gr.Textbox(
                                label="Analysis Results",
                                elem_classes="chat-output",
                                lines=10,
                                placeholder="Upload an audio file and click 'Analyze Audio' to see detailed results here...",
                                interactive=False
                            )
                            
                            # Audio examples
                            audio_examples = []
                            if os.path.exists("audios/DF_E_2000027.flac"):
                                audio_examples.append("audios/DF_E_2000027.flac")
                            if os.path.exists("audios/DF_E_2000031.flac"):
                                audio_examples.append("audios/DF_E_2000031.flac")
                            
                            if audio_examples:
                                with gr.Accordion("πŸ“ Try Sample Audio", open=False, elem_classes="chat-accordion"):
                                    gr.Examples(
                                        examples=audio_examples,
                                        inputs=audio_input,
                                        label="Sample audio files for testing:"
                                    )
                    
                    # Image Analysis Content
                    image_content = gr.Column(visible=False)
                    with image_content:
                        with gr.Column(elem_classes="chat-card"):
                            gr.Markdown("### Upload Image File")
                            gr.Markdown("*Drag and drop or click to browse β€’ Supported: JPG, PNG, WEBP, BMP*")
                            
                            image_input = gr.Image(
                                label="",
                                elem_classes="upload-area",
                                height=300
                            )
                            
                            image_btn = gr.Button(
                                "πŸ” Analyze Image",
                                elem_classes="chat-button",
                                size="lg",
                                variant="primary"
                            )
                            
                            image_output = gr.Textbox(
                                label="Analysis Results",
                                elem_classes="chat-output",
                                lines=10,
                                placeholder="Upload an image and click 'Analyze Image' to see detailed results here...",
                                interactive=False
                            )
                            
                            # Image examples
                            image_examples = []
                            if os.path.exists("images/lady.jpg"):
                                image_examples.append("images/lady.jpg")
                            if os.path.exists("images/fake_image.jpg"):
                                image_examples.append("images/fake_image.jpg")
                            
                            if image_examples:
                                with gr.Accordion("πŸ“ Try Sample Images", open=False, elem_classes="chat-accordion"):
                                    gr.Examples(
                                        examples=image_examples,
                                        inputs=image_input,
                                        label="Sample images for testing:"
                                    )
    
    # Sidebar navigation functions
    def switch_to_video():
        return (
            gr.update(visible=True),   # video_content
            gr.update(visible=False),  # audio_content
            gr.update(visible=False),  # image_content
            '<div class="chat-title">Video Deepfake Detection</div>',
            '<div class="chat-subtitle">Upload a video file to analyze for potential deepfake manipulation</div>',
            "video"
        )
    
    def switch_to_audio():
        return (
            gr.update(visible=False),  # video_content
            gr.update(visible=True),   # audio_content
            gr.update(visible=False),  # image_content
            '<div class="chat-title">Audio Deepfake Detection</div>',
            '<div class="chat-subtitle">Upload an audio file to detect voice cloning or synthetic speech</div>',
            "audio"
        )
    
    def switch_to_image():
        return (
            gr.update(visible=False),  # video_content
            gr.update(visible=False),  # audio_content
            gr.update(visible=True),   # image_content
            '<div class="chat-title">Image Deepfake Detection</div>',
            '<div class="chat-subtitle">Upload an image to detect face swaps, GANs, or other manipulations</div>',
            "image"
        )
    
    # Connect sidebar navigation
    video_btn_sidebar.click(
        switch_to_video,
        outputs=[video_content, audio_content, image_content, current_title, current_subtitle, analysis_type]
    )
    
    audio_btn_sidebar.click(
        switch_to_audio,
        outputs=[video_content, audio_content, image_content, current_title, current_subtitle, analysis_type]
    )
    
    image_btn_sidebar.click(
        switch_to_image,
        outputs=[video_content, audio_content, image_content, current_title, current_subtitle, analysis_type]
    )
    
    # Enhanced prediction functions with better formatting
    def safe_video_predict(video):
        if video is None:
            return "⚠️ Please upload a video file first."
        try:
            result = inference.deepfakes_video_predict(video)
            return f"🎬 VIDEO ANALYSIS COMPLETE\n{'='*50}\n\nβœ… {result}\n\nπŸ“Š Analysis performed using ResNext-50 + LSTM model\n🎯 Model accuracy: 96.2%\n⏱️ Processing time: Variable based on video length"
        except Exception as e:
            return f"❌ VIDEO ANALYSIS FAILED\n{'='*50}\n\nπŸ” Error Details:\n{str(e)}\n\nπŸ’‘ Troubleshooting:\nβ€’ Ensure video format is supported (MP4, AVI, MOV, MKV)\nβ€’ Check if file is corrupted\nβ€’ Try a smaller file size"
    
    def safe_audio_predict(audio):
        if audio is None:
            return "⚠️ Please upload an audio file first."
        try:
            result = inference.deepfakes_spec_predict(audio)
            return f"🎡 AUDIO ANALYSIS COMPLETE\n{'='*50}\n\nβœ… {result}\n\nπŸ“Š Analysis performed using Spectral CNN + Transformer model\n🎯 Model accuracy: 94.8%\n⏱️ Processing time: ~5-15 seconds"
        except Exception as e:
            return f"❌ AUDIO ANALYSIS FAILED\n{'='*50}\n\nπŸ” Error Details:\n{str(e)}\n\nπŸ’‘ Troubleshooting:\nβ€’ Ensure audio format is supported (WAV, MP3, FLAC, M4A)\nβ€’ Check if file is corrupted\nβ€’ Try converting to WAV format"
    
    def safe_image_predict(image):
        if image is None:
            return "⚠️ Please upload an image file first."
        try:
            result = inference.deepfakes_image_predict(image)
            return f"πŸ–ΌοΈ IMAGE ANALYSIS COMPLETE\n{'='*50}\n\nβœ… {result}\n\nπŸ“Š Analysis performed using EfficientNet-B4 + XceptionNet model\n🎯 Model accuracy: 97.1%\n⏱️ Processing time: ~2-5 seconds"
        except Exception as e:
            return f"❌ IMAGE ANALYSIS FAILED\n{'='*50}\n\nπŸ” Error Details:\n{str(e)}\n\nπŸ’‘ Troubleshooting:\nβ€’ Ensure image format is supported (JPG, PNG, WEBP, BMP)\nβ€’ Check if file is corrupted\nβ€’ Try a different image file"
    
    # Connect analysis buttons
    video_btn.click(safe_video_predict, video_input, video_output, show_progress=True)
    audio_btn.click(safe_audio_predict, audio_input, audio_output, show_progress=True)
    image_btn.click(safe_image_predict, image_input, image_output, show_progress=True)

# Launch Configuration - Windows Optimized
if __name__ == "__main__":
    import random
    
    # Try multiple ports to avoid conflicts
    ports_to_try = [7862, 7863, 7864, 7865, 8000, 8001, 8002]
    
    for port in ports_to_try:
        try:
            print(f"Trying to start server on port {port}...")
            app.launch(
                server_name="127.0.0.1",
                server_port=port,
                share=False,
                inbrowser=True,
                prevent_thread_lock=False,
                show_error=True,
                quiet=False,
                max_threads=40
            )
            break  # If successful, break the loop
        except OSError as e:
            if "port" in str(e).lower():
                print(f"Port {port} is busy, trying next port...")
                continue
            else:
                print(f"Error starting server: {e}")
                break
        except Exception as e:
            print(f"Unexpected error: {e}")
            break
    else:
        print("All ports are busy. Please close other applications and try again.")