Datasets:
Formats:
webdataset
Size:
100K - 1M
Add dataset README with TAR format documentation
Browse files
README.md
ADDED
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
task_categories:
|
| 3 |
+
- reinforcement-learning
|
| 4 |
+
- robotics
|
| 5 |
+
tags:
|
| 6 |
+
- robotics
|
| 7 |
+
- libero
|
| 8 |
+
- manipulation
|
| 9 |
+
- semantic-action-chunking
|
| 10 |
+
- vision-language
|
| 11 |
+
- imitation-learning
|
| 12 |
+
size_categories:
|
| 13 |
+
- 100K<n<1M
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# GATE-VLAP Datasets
|
| 17 |
+
|
| 18 |
+
**Grounded Action Trajectory Embeddings with Vision-Language Action Planning**
|
| 19 |
+
|
| 20 |
+
This repository contains preprocessed datasets from the LIBERO benchmark suite, specifically designed for training vision-language-action models with semantic action segmentation.
|
| 21 |
+
|
| 22 |
+
## Why Raw Format?
|
| 23 |
+
|
| 24 |
+
We provide datasets in **raw PNG + JSON format** rather than pre-packaged TAR/WebDataset files for several important reasons:
|
| 25 |
+
|
| 26 |
+
### Advantages of Raw Format
|
| 27 |
+
|
| 28 |
+
1. **Easy Inspection**: Browse and visualize individual demonstrations directly on HuggingFace
|
| 29 |
+
2. **Maximum Flexibility**:
|
| 30 |
+
- Load with any framework (PyTorch, TensorFlow, JAX)
|
| 31 |
+
- Convert to your preferred format (TAR, RLDS, LeRobot, custom)
|
| 32 |
+
- Cherry-pick specific demos or subtasks
|
| 33 |
+
3. **Better Debugging**:
|
| 34 |
+
- Inspect problematic frames without extracting archives
|
| 35 |
+
- Verify data quality visually
|
| 36 |
+
- Check action sequences frame-by-frame
|
| 37 |
+
4. **Transparent**: See exact file structure and metadata organization
|
| 38 |
+
5. **Version Control**: Git LFS handles individual files better than large archives
|
| 39 |
+
|
| 40 |
+
### Converting to TAR/WebDataset
|
| 41 |
+
|
| 42 |
+
If you need TAR format for efficient streaming during training, you can easily convert:
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
import webdataset as wds
|
| 46 |
+
from pathlib import Path
|
| 47 |
+
import json
|
| 48 |
+
from PIL import Image
|
| 49 |
+
|
| 50 |
+
def convert_to_tar(input_dir, output_pattern, maxcount=1000):
|
| 51 |
+
"""
|
| 52 |
+
Convert raw PNG+JSON format to WebDataset TAR shards.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
input_dir: Path to subtask directory (e.g., "libero_10/pick_up_the_black_bowl")
|
| 56 |
+
output_pattern: Output pattern (e.g., "output/shard-%06d.tar")
|
| 57 |
+
maxcount: Max samples per shard (default: 1000 frames per TAR)
|
| 58 |
+
"""
|
| 59 |
+
with wds.ShardWriter(output_pattern, maxcount=maxcount) as sink:
|
| 60 |
+
subtask_path = Path(input_dir)
|
| 61 |
+
|
| 62 |
+
# Iterate through demos
|
| 63 |
+
for demo_dir in sorted(subtask_path.iterdir()):
|
| 64 |
+
if not demo_dir.is_dir():
|
| 65 |
+
continue
|
| 66 |
+
|
| 67 |
+
# Iterate through timesteps
|
| 68 |
+
for json_file in sorted(demo_dir.glob("*.json")):
|
| 69 |
+
png_file = json_file.with_suffix(".png")
|
| 70 |
+
|
| 71 |
+
if not png_file.exists():
|
| 72 |
+
continue
|
| 73 |
+
|
| 74 |
+
# Load data
|
| 75 |
+
with open(json_file) as f:
|
| 76 |
+
data = json.load(f)
|
| 77 |
+
|
| 78 |
+
# Create WebDataset sample
|
| 79 |
+
sample = {
|
| 80 |
+
"__key__": f"{demo_dir.name}/{json_file.stem}",
|
| 81 |
+
"png": Image.open(png_file),
|
| 82 |
+
"json": data,
|
| 83 |
+
"action.pyd": data["action"], # NumPy-compatible format
|
| 84 |
+
"robot_state.pyd": data["robot_state"],
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
sink.write(sample)
|
| 88 |
+
|
| 89 |
+
# Example: Convert a subtask to TAR
|
| 90 |
+
convert_to_tar(
|
| 91 |
+
"libero_10/pick_up_the_black_bowl",
|
| 92 |
+
"tar_output/pick_up_the_black_bowl-%06d.tar"
|
| 93 |
+
)
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
### Loading Raw Data
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
from pathlib import Path
|
| 100 |
+
import json
|
| 101 |
+
from PIL import Image
|
| 102 |
+
import numpy as np
|
| 103 |
+
|
| 104 |
+
def load_demo(demo_dir):
|
| 105 |
+
"""Load a single demonstration."""
|
| 106 |
+
frames = []
|
| 107 |
+
demo_path = Path(demo_dir)
|
| 108 |
+
|
| 109 |
+
for json_file in sorted(demo_path.glob("*.json")):
|
| 110 |
+
# Load metadata
|
| 111 |
+
with open(json_file) as f:
|
| 112 |
+
data = json.load(f)
|
| 113 |
+
|
| 114 |
+
# Load image
|
| 115 |
+
png_file = json_file.with_suffix(".png")
|
| 116 |
+
data["image"] = np.array(Image.open(png_file))
|
| 117 |
+
|
| 118 |
+
frames.append(data)
|
| 119 |
+
|
| 120 |
+
return frames
|
| 121 |
+
|
| 122 |
+
# Load a specific demo
|
| 123 |
+
demo = load_demo("libero_10/pick_up_the_black_bowl/demo_0")
|
| 124 |
+
print(f"Demo length: {len(demo)} frames")
|
| 125 |
+
print(f"Action shape: {demo[0]['action'].shape}")
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
## Datasets Included
|
| 129 |
+
|
| 130 |
+
### LIBERO-10 (Long-Horizon Tasks)
|
| 131 |
+
|
| 132 |
+
- **Task Type**: 10 complex, long-horizon manipulation tasks
|
| 133 |
+
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
|
| 134 |
+
- **Demos**: 1,354 demonstrations across 29 subtasks
|
| 135 |
+
- **Frames**: 103,650 total frames
|
| 136 |
+
- **Subtasks**: Tasks are automatically segmented into atomic subtasks
|
| 137 |
+
|
| 138 |
+
**Example Tasks**:
|
| 139 |
+
- `pick_up_the_black_bowl` → Segmented into pick and place subtasks
|
| 140 |
+
- `close_the_drawer` → Segmented into approach, grasp, close subtasks
|
| 141 |
+
- `put_the_bowl_in_the_drawer` → Multi-step pick, open, place, close sequence
|
| 142 |
+
|
| 143 |
+
### LIBERO-Object (Object Manipulation)
|
| 144 |
+
|
| 145 |
+
- **Task Type**: 10 object-centric manipulation tasks
|
| 146 |
+
- **Segmentation Method**: Rule-based gripper detection with stop signals
|
| 147 |
+
- **Demos**: 875 demonstrations across 20 subtasks
|
| 148 |
+
- **Frames**: 66,334 total frames
|
| 149 |
+
- **Subtasks**: Pick and place variations for 10 different objects
|
| 150 |
+
|
| 151 |
+
**Example Tasks**:
|
| 152 |
+
- `pick_up_the_alphabet_soup` → Approach, grasp, lift
|
| 153 |
+
- `place_the_alphabet_soup_on_the_basket` → Move, position, place, release
|
| 154 |
+
|
| 155 |
+
## ���� Dataset Structure
|
| 156 |
+
|
| 157 |
+
```
|
| 158 |
+
gate-institute/GATE-VLAP-datasets/
|
| 159 |
+
├── libero_10/ # Long-horizon tasks
|
| 160 |
+
│ ├── close_the_drawer/
|
| 161 |
+
│ │ ├── demo_0/
|
| 162 |
+
│ │ │ ├── demo_0_timestep_0000.png # RGB observation (128x128)
|
| 163 |
+
│ │ │ ├── demo_0_timestep_0000.json # Action + metadata
|
| 164 |
+
│ │ │ ├── demo_0_timestep_0001.png
|
| 165 |
+
│ │ │ ├── demo_0_timestep_0001.json
|
| 166 |
+
│ │ │ └── ...
|
| 167 |
+
│ │ ├── demo_1/
|
| 168 |
+
│ │ └── ...
|
| 169 |
+
│ ├── pick_up_the_black_bowl/
|
| 170 |
+
│ └── ... (29 subtasks total)
|
| 171 |
+
│
|
| 172 |
+
├── libero_object/ # Object manipulation tasks
|
| 173 |
+
│ ├── pick_up_the_alphabet_soup/
|
| 174 |
+
│ │ ├── demo_0/
|
| 175 |
+
│ │ │ ├── demo_0_timestep_0000.png
|
| 176 |
+
│ │ │ ├── demo_0_timestep_0000.json
|
| 177 |
+
│ │ │ └── ...
|
| 178 |
+
│ │ └── ...
|
| 179 |
+
│ └── ... (20 subtasks total)
|
| 180 |
+
│
|
| 181 |
+
└── metadata/ # Dataset statistics & segmentation
|
| 182 |
+
├── libero_10_complete_stats.json
|
| 183 |
+
├── libero_10_all_segments.json
|
| 184 |
+
├── libero_object_complete_stats.json
|
| 185 |
+
└── libero_object_all_segments.json
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
## Data Format
|
| 189 |
+
|
| 190 |
+
### JSON Metadata (per timestep)
|
| 191 |
+
|
| 192 |
+
Each `.json` file contains:
|
| 193 |
+
|
| 194 |
+
```json
|
| 195 |
+
{
|
| 196 |
+
"action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0], // 7-DOF action (xyz, rpy, gripper)
|
| 197 |
+
"robot_state": [...], // Joint positions, velocities
|
| 198 |
+
"demo_id": "demo_0",
|
| 199 |
+
"timestep": 42,
|
| 200 |
+
"subtask": "pick_up_the_black_bowl",
|
| 201 |
+
"parent_task": "LIBERO_10",
|
| 202 |
+
"is_stop_signal": false // Segment boundary marker
|
| 203 |
+
}
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
### Action Space
|
| 207 |
+
|
| 208 |
+
- **Dimensions**: 7-DOF
|
| 209 |
+
- `[0:3]`: End-effector position delta (x, y, z)
|
| 210 |
+
- `[3:6]`: End-effector orientation delta (roll, pitch, yaw)
|
| 211 |
+
- `[6]`: Gripper action (0.0 = close, 1.0 = open)
|
| 212 |
+
- **Range**: Normalized to [-1, 1]
|
| 213 |
+
- **Control**: Delta actions (relative to current pose)
|
| 214 |
+
|
| 215 |
+
### Image Format
|
| 216 |
+
|
| 217 |
+
- **Resolution**: 128×128 pixels
|
| 218 |
+
- **Channels**: RGB (3 channels)
|
| 219 |
+
- **Format**: PNG (lossless compression)
|
| 220 |
+
- **Camera**: Front-facing agentview camera
|
| 221 |
+
|
| 222 |
+
## Metadata Files Explained
|
| 223 |
+
|
| 224 |
+
### 1. `libero_10_complete_stats.json`
|
| 225 |
+
|
| 226 |
+
**Purpose**: Overview statistics for the entire LIBERO-10 dataset
|
| 227 |
+
|
| 228 |
+
```json
|
| 229 |
+
{
|
| 230 |
+
"dataset": "LIBERO-10",
|
| 231 |
+
"total_parent_tasks": 10,
|
| 232 |
+
"total_subtasks": 29,
|
| 233 |
+
"total_demos": 1354,
|
| 234 |
+
"total_frames": 103650,
|
| 235 |
+
"parent_task_mapping": {
|
| 236 |
+
"LIBERO_10": {
|
| 237 |
+
"frames": 103650,
|
| 238 |
+
"demos": 1354,
|
| 239 |
+
"subtasks": ["pick_up_the_black_bowl", "close_the_drawer", ...]
|
| 240 |
+
}
|
| 241 |
+
},
|
| 242 |
+
"subtask_details": {
|
| 243 |
+
"pick_up_the_black_bowl": {
|
| 244 |
+
"demo_count": 48,
|
| 245 |
+
"frame_count": 3516,
|
| 246 |
+
"avg_frames_per_demo": 73.25,
|
| 247 |
+
"parent_task": "LIBERO_10"
|
| 248 |
+
},
|
| 249 |
+
...
|
| 250 |
+
}
|
| 251 |
+
}
|
| 252 |
+
```
|
| 253 |
+
|
| 254 |
+
**Use Case**:
|
| 255 |
+
- Understand dataset composition
|
| 256 |
+
- Plan training splits
|
| 257 |
+
- Check demo/frame distribution across tasks
|
| 258 |
+
|
| 259 |
+
### 2. `libero_10_all_segments.json`
|
| 260 |
+
|
| 261 |
+
**Purpose**: Detailed segmentation metadata for each demonstration
|
| 262 |
+
|
| 263 |
+
```json
|
| 264 |
+
{
|
| 265 |
+
"demo_0": {
|
| 266 |
+
"subtask": "pick_up_the_black_bowl",
|
| 267 |
+
"parent_task": "LIBERO_10",
|
| 268 |
+
"segments": [
|
| 269 |
+
{
|
| 270 |
+
"segment_id": 0,
|
| 271 |
+
"start_frame": 0,
|
| 272 |
+
"end_frame": 35,
|
| 273 |
+
"description": "Approach the black bowl",
|
| 274 |
+
"action_type": "reach"
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"segment_id": 1,
|
| 278 |
+
"start_frame": 36,
|
| 279 |
+
"end_frame": 45,
|
| 280 |
+
"description": "Grasp the black bowl",
|
| 281 |
+
"action_type": "grasp"
|
| 282 |
+
},
|
| 283 |
+
...
|
| 284 |
+
],
|
| 285 |
+
"segmentation_method": "gemini_vision_api",
|
| 286 |
+
"total_segments": 3
|
| 287 |
+
},
|
| 288 |
+
...
|
| 289 |
+
}
|
| 290 |
+
```
|
| 291 |
+
|
| 292 |
+
**Use Case**:
|
| 293 |
+
- Train with semantic action chunks
|
| 294 |
+
- Implement hierarchical policies
|
| 295 |
+
- Analyze action primitives
|
| 296 |
+
- Filter by segment type
|
| 297 |
+
|
| 298 |
+
### 3. `libero_object_complete_stats.json`
|
| 299 |
+
|
| 300 |
+
**Purpose**: Statistics for LIBERO-Object dataset (same structure as LIBERO-10)
|
| 301 |
+
|
| 302 |
+
**Key Differences**:
|
| 303 |
+
- Fewer, simpler subtasks (20 vs 29)
|
| 304 |
+
- Object-centric task naming
|
| 305 |
+
- Rule-based segmentation instead of vision-based
|
| 306 |
+
|
| 307 |
+
### 4. `libero_object_all_segments.json`
|
| 308 |
+
|
| 309 |
+
**Purpose**: Segmentation for LIBERO-Object demonstrations
|
| 310 |
+
|
| 311 |
+
**Segmentation Method**: Rule-based gripper detection
|
| 312 |
+
- Segments identified by gripper state changes
|
| 313 |
+
- Stop signals mark task completion
|
| 314 |
+
- More consistent segment boundaries than vision-based
|
| 315 |
+
|
| 316 |
+
## Citation
|
| 317 |
+
|
| 318 |
+
If you use this dataset, please cite:
|
| 319 |
+
|
| 320 |
+
```bibtex
|
| 321 |
+
@article{gateVLAP2024,
|
| 322 |
+
title={GATE-VLAP: Grounded Action Trajectory Embeddings with Vision-Language Action Planning},
|
| 323 |
+
author={[Your Name]},
|
| 324 |
+
journal={arXiv preprint arXiv:XXXX.XXXXX},
|
| 325 |
+
year={2024}
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
@inproceedings{liu2023libero,
|
| 329 |
+
title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
|
| 330 |
+
author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
|
| 331 |
+
booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
|
| 332 |
+
year={2023}
|
| 333 |
+
}
|
| 334 |
+
```
|
| 335 |
+
|
| 336 |
+
## Related Resources
|
| 337 |
+
|
| 338 |
+
- **Model Checkpoints**: [gate-institute/GATE-VLAP](https://huggingface.co/gate-institute/GATE-VLAP) *(coming soon)*
|
| 339 |
+
- **Original LIBERO**: [https://github.com/Lifelong-Robot-Learning/LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO)
|
| 340 |
+
- **Paper**: [arXiv:XXXX.XXXXX](https://arxiv.org) *(coming soon)*
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
## Acknowledgments
|
| 344 |
+
|
| 345 |
+
- **LIBERO Benchmark**: Original dataset by Liu et al. (2023)
|
| 346 |
+
- **Segmentation**: Gemini Vision API for LIBERO-10 semantic chunking
|
| 347 |
+
- **Infrastructure**: Processed on GATE Institute infrastructure
|
| 348 |
+
|
| 349 |
+
## Contact
|
| 350 |
+
|
| 351 |
+
For questions or issues, please open an issue on our [GitHub repository](https://github.com/your-repo) or contact [[email protected]].
|
| 352 |
+
|
| 353 |
+
---
|
| 354 |
+
|
| 355 |
+
**Dataset Version**: 1.0
|
| 356 |
+
**Last Updated**: December 2025
|
| 357 |
+
**Maintainer**: GATE Institute
|