Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRadioDiff-3D: A 3D$\times$3D Radio Map Dataset and Generative Diffusion Based Benchmark for 6G Environment-Aware Communication
Radio maps (RMs) serve as a critical foundation for enabling environment-aware wireless communication, as they provide the spatial distribution of wireless channel characteristics. Despite recent progress in RM construction using data-driven approaches, most existing methods focus solely on pathloss prediction in a fixed 2D plane, neglecting key parameters such as direction of arrival (DoA), time of arrival (ToA), and vertical spatial variations. Such a limitation is primarily due to the reliance on static learning paradigms, which hinder generalization beyond the training data distribution. To address these challenges, we propose UrbanRadio3D, a large-scale, high-resolution 3D RM dataset constructed via ray tracing in realistic urban environments. UrbanRadio3D is over 37times3 larger than previous datasets across a 3D space with 3 metrics as pathloss, DoA, and ToA, forming a novel 3Dtimes33D dataset with 7times3 more height layers than prior state-of-the-art (SOTA) dataset. To benchmark 3D RM construction, a UNet with 3D convolutional operators is proposed. Moreover, we further introduce RadioDiff-3D, a diffusion-model-based generative framework utilizing the 3D convolutional architecture. RadioDiff-3D supports both radiation-aware scenarios with known transmitter locations and radiation-unaware settings based on sparse spatial observations. Extensive evaluations on UrbanRadio3D validate that RadioDiff-3D achieves superior performance in constructing rich, high-dimensional radio maps under diverse environmental dynamics. This work provides a foundational dataset and benchmark for future research in 3D environment-aware communication. The dataset is available at https://github.com/UNIC-Lab/UrbanRadio3D.
Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks
While the use of bottom-up local operators in convolutional neural networks (CNNs) matches well some of the statistics of natural images, it may also prevent such models from capturing contextual long-range feature interactions. In this work, we propose a simple, lightweight approach for better context exploitation in CNNs. We do so by introducing a pair of operators: gather, which efficiently aggregates feature responses from a large spatial extent, and excite, which redistributes the pooled information to local features. The operators are cheap, both in terms of number of added parameters and computational complexity, and can be integrated directly in existing architectures to improve their performance. Experiments on several datasets show that gather-excite can bring benefits comparable to increasing the depth of a CNN at a fraction of the cost. For example, we find ResNet-50 with gather-excite operators is able to outperform its 101-layer counterpart on ImageNet with no additional learnable parameters. We also propose a parametric gather-excite operator pair which yields further performance gains, relate it to the recently-introduced Squeeze-and-Excitation Networks, and analyse the effects of these changes to the CNN feature activation statistics.
DFYP: A Dynamic Fusion Framework with Spectral Channel Attention and Adaptive Operator learning for Crop Yield Prediction
Accurate remote sensing-based crop yield prediction remains a fundamental challenging task due to complex spatial patterns, heterogeneous spectral characteristics, and dynamic agricultural conditions. Existing methods often suffer from limited spatial modeling capacity, weak generalization across crop types and years. To address these challenges, we propose DFYP, a novel Dynamic Fusion framework for crop Yield Prediction, which combines spectral channel attention, edge-adaptive spatial modeling and a learnable fusion mechanism to improve robustness across diverse agricultural scenarios. Specifically, DFYP introduces three key components: (1) a Resolution-aware Channel Attention (RCA) module that enhances spectral representation by adaptively reweighting input channels based on resolution-specific characteristics; (2) an Adaptive Operator Learning Network (AOL-Net) that dynamically selects operators for convolutional kernels to improve edge-sensitive spatial feature extraction under varying crop and temporal conditions; and (3) a dual-branch architecture with a learnable fusion mechanism, which jointly models local spatial details and global contextual information to support cross-resolution and cross-crop generalization. Extensive experiments on multi-year datasets MODIS and multi-crop dataset Sentinel-2 demonstrate that DFYP consistently outperforms current state-of-the-art baselines in RMSE, MAE, and R2 across different spatial resolutions, crop types, and time periods, showcasing its effectiveness and robustness for real-world agricultural monitoring.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the core building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Planing It by Ear: Convolutional Neural Networks for Acoustic Anomaly Detection in Industrial Wood Planers
In recent years, the wood product industry has been facing a skilled labor shortage. The result is more frequent sudden failures, resulting in additional costs for these companies already operating in a very competitive market. Moreover, sawmills are challenging environments for machinery and sensors. Given that experienced machine operators may be able to diagnose defects or malfunctions, one possible way of assisting novice operators is through acoustic monitoring. As a step towards the automation of wood-processing equipment and decision support systems for machine operators, in this paper, we explore using a deep convolutional autoencoder for acoustic anomaly detection of wood planers on a new real-life dataset. Specifically, our convolutional autoencoder with skip connections (Skip-CAE) and our Skip-CAE transformer outperform the DCASE autoencoder baseline, one-class SVM, isolation forest and a published convolutional autoencoder architecture, respectively obtaining an area under the ROC curve of 0.846 and 0.875 on a dataset of real-factory planer sounds. Moreover, we show that adding skip connections and attention mechanism under the form of a transformer encoder-decoder helps to further improve the anomaly detection capabilities.
Neural Operators with Localized Integral and Differential Kernels
Neural operators learn mappings between function spaces, which is practical for learning solution operators of PDEs and other scientific modeling applications. Among them, the Fourier neural operator (FNO) is a popular architecture that performs global convolutions in the Fourier space. However, such global operations are often prone to over-smoothing and may fail to capture local details. In contrast, convolutional neural networks (CNN) can capture local features but are limited to training and inference at a single resolution. In this work, we present a principled approach to operator learning that can capture local features under two frameworks by learning differential operators and integral operators with locally supported kernels. Specifically, inspired by stencil methods, we prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs. To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions. Both these approaches preserve the properties of operator learning and, hence, the ability to predict at any resolution. Adding our layers to FNOs significantly improves their performance, reducing the relative L2-error by 34-72% in our experiments, which include a turbulent 2D Navier-Stokes and the spherical shallow water equations.
Improving Graph Neural Networks with Learnable Propagation Operators
Graph Neural Networks (GNNs) are limited in their propagation operators. In many cases, these operators often contain non-negative elements only and are shared across channels, limiting the expressiveness of GNNs. Moreover, some GNNs suffer from over-smoothing, limiting their depth. On the other hand, Convolutional Neural Networks (CNNs) can learn diverse propagation filters, and phenomena like over-smoothing are typically not apparent in CNNs. In this paper, we bridge these gaps by incorporating trainable channel-wise weighting factors omega to learn and mix multiple smoothing and sharpening propagation operators at each layer. Our generic method is called omegaGNN, and is easy to implement. We study two variants: omegaGCN and omegaGAT. For omegaGCN, we theoretically analyse its behaviour and the impact of omega on the obtained node features. Our experiments confirm these findings, demonstrating and explaining how both variants do not over-smooth. Additionally, we experiment with 15 real-world datasets on node- and graph-classification tasks, where our omegaGCN and omegaGAT perform on par with state-of-the-art methods.
ULSAM: Ultra-Lightweight Subspace Attention Module for Compact Convolutional Neural Networks
The capability of the self-attention mechanism to model the long-range dependencies has catapulted its deployment in vision models. Unlike convolution operators, self-attention offers infinite receptive field and enables compute-efficient modeling of global dependencies. However, the existing state-of-the-art attention mechanisms incur high compute and/or parameter overheads, and hence unfit for compact convolutional neural networks (CNNs). In this work, we propose a simple yet effective "Ultra-Lightweight Subspace Attention Mechanism" (ULSAM), which infers different attention maps for each feature map subspace. We argue that leaning separate attention maps for each feature subspace enables multi-scale and multi-frequency feature representation, which is more desirable for fine-grained image classification. Our method of subspace attention is orthogonal and complementary to the existing state-of-the-arts attention mechanisms used in vision models. ULSAM is end-to-end trainable and can be deployed as a plug-and-play module in the pre-existing compact CNNs. Notably, our work is the first attempt that uses a subspace attention mechanism to increase the efficiency of compact CNNs. To show the efficacy of ULSAM, we perform experiments with MobileNet-V1 and MobileNet-V2 as backbone architectures on ImageNet-1K and three fine-grained image classification datasets. We achieve approx13% and approx25% reduction in both the FLOPs and parameter counts of MobileNet-V2 with a 0.27% and more than 1% improvement in top-1 accuracy on the ImageNet-1K and fine-grained image classification datasets (respectively). Code and trained models are available at https://github.com/Nandan91/ULSAM.
Ambiguity in solving imaging inverse problems with deep learning based operators
In recent years, large convolutional neural networks have been widely used as tools for image deblurring, because of their ability in restoring images very precisely. It is well known that image deblurring is mathematically modeled as an ill-posed inverse problem and its solution is difficult to approximate when noise affects the data. Really, one limitation of neural networks for deblurring is their sensitivity to noise and other perturbations, which can lead to instability and produce poor reconstructions. In addition, networks do not necessarily take into account the numerical formulation of the underlying imaging problem, when trained end-to-end. In this paper, we propose some strategies to improve stability without losing to much accuracy to deblur images with deep-learning based methods. First, we suggest a very small neural architecture, which reduces the execution time for training, satisfying a green AI need, and does not extremely amplify noise in the computed image. Second, we introduce a unified framework where a pre-processing step balances the lack of stability of the following, neural network-based, step. Two different pre-processors are presented: the former implements a strong parameter-free denoiser, and the latter is a variational model-based regularized formulation of the latent imaging problem. This framework is also formally characterized by mathematical analysis. Numerical experiments are performed to verify the accuracy and stability of the proposed approaches for image deblurring when unknown or not-quantified noise is present; the results confirm that they improve the network stability with respect to noise. In particular, the model-based framework represents the most reliable trade-off between visual precision and robustness.
Toward a Better Understanding of Fourier Neural Operators: Analysis and Improvement from a Spectral Perspective
In solving partial differential equations (PDEs), Fourier Neural Operators (FNOs) have exhibited notable effectiveness compared to Convolutional Neural Networks (CNNs). This paper presents clear empirical evidence through spectral analysis to elucidate the superiority of FNO over CNNs: FNO is significantly more capable of learning low-frequencies. This empirical evidence also unveils FNO's distinct low-frequency bias, which limits FNO's effectiveness in learning high-frequency information from PDE data. To tackle this challenge, we introduce SpecBoost, an ensemble learning framework that employs multiple FNOs to better capture high-frequency information. Specifically, a secondary FNO is utilized to learn the overlooked high-frequency information from the prediction residual of the initial FNO. Experiments demonstrate that SpecBoost noticeably enhances FNO's prediction accuracy on diverse PDE applications, achieving an up to 71% improvement.
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Recognizing arbitrary multi-character text in unconstrained natural photographs is a hard problem. In this paper, we address an equally hard sub-problem in this domain viz. recognizing arbitrary multi-digit numbers from Street View imagery. Traditional approaches to solve this problem typically separate out the localization, segmentation, and recognition steps. In this paper we propose a unified approach that integrates these three steps via the use of a deep convolutional neural network that operates directly on the image pixels. We employ the DistBelief implementation of deep neural networks in order to train large, distributed neural networks on high quality images. We find that the performance of this approach increases with the depth of the convolutional network, with the best performance occurring in the deepest architecture we trained, with eleven hidden layers. We evaluate this approach on the publicly available SVHN dataset and achieve over 96% accuracy in recognizing complete street numbers. We show that on a per-digit recognition task, we improve upon the state-of-the-art, achieving 97.84% accuracy. We also evaluate this approach on an even more challenging dataset generated from Street View imagery containing several tens of millions of street number annotations and achieve over 90% accuracy. To further explore the applicability of the proposed system to broader text recognition tasks, we apply it to synthetic distorted text from reCAPTCHA. reCAPTCHA is one of the most secure reverse turing tests that uses distorted text to distinguish humans from bots. We report a 99.8% accuracy on the hardest category of reCAPTCHA. Our evaluations on both tasks indicate that at specific operating thresholds, the performance of the proposed system is comparable to, and in some cases exceeds, that of human operators.
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., band-limited functions, cartoon functions, and Lipschitz functions.
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs
Operator Learning with Neural Fields: Tackling PDEs on General Geometries
Machine learning approaches for solving partial differential equations require learning mappings between function spaces. While convolutional or graph neural networks are constrained to discretized functions, neural operators present a promising milestone toward mapping functions directly. Despite impressive results they still face challenges with respect to the domain geometry and typically rely on some form of discretization. In order to alleviate such limitations, we present CORAL, a new method that leverages coordinate-based networks for solving PDEs on general geometries. CORAL is designed to remove constraints on the input mesh, making it applicable to any spatial sampling and geometry. Its ability extends to diverse problem domains, including PDE solving, spatio-temporal forecasting, and inverse problems like geometric design. CORAL demonstrates robust performance across multiple resolutions and performs well in both convex and non-convex domains, surpassing or performing on par with state-of-the-art models.
Task-Aware Image Signal Processor for Advanced Visual Perception
In recent years, there has been a growing trend in computer vision towards exploiting RAW sensor data, which preserves richer information compared to conventional low-bit RGB images. Early studies mainly focused on enhancing visual quality, while more recent efforts aim to leverage the abundant information in RAW data to improve the performance of visual perception tasks such as object detection and segmentation. However, existing approaches still face two key limitations: large-scale ISP networks impose heavy computational overhead, while methods based on tuning traditional ISP pipelines are restricted by limited representational capacity.To address these issues, we propose Task-Aware Image Signal Processing (TA-ISP), a compact RAW-to-RGB framework that produces task-oriented representations for pretrained vision models. Instead of heavy dense convolutional pipelines, TA-ISP predicts a small set of lightweight, multi-scale modulation operators that act at global, regional, and pixel scales to reshape image statistics across different spatial extents. This factorized control significantly expands the range of spatially varying transforms that can be represented while keeping memory usage, computation, and latency tightly constrained. Evaluated on several RAW-domain detection and segmentation benchmarks under both daytime and nighttime conditions, TA-ISP consistently improves downstream accuracy while markedly reducing parameter count and inference time, making it well suited for deployment on resource-constrained devices.
ECT: Fine-grained Edge Detection with Learned Cause Tokens
In this study, we tackle the challenging fine-grained edge detection task, which refers to predicting specific edges caused by reflectance, illumination, normal, and depth changes, respectively. Prior methods exploit multi-scale convolutional networks, which are limited in three aspects: (1) Convolutions are local operators while identifying the cause of edge formation requires looking at far away pixels. (2) Priors specific to edge cause are fixed in prediction heads. (3) Using separate networks for generic and fine-grained edge detection, and the constraint between them may be violated. To address these three issues, we propose a two-stage transformer-based network sequentially predicting generic edges and fine-grained edges, which has a global receptive field thanks to the attention mechanism. The prior knowledge of edge causes is formulated as four learnable cause tokens in a cause-aware decoder design. Furthermore, to encourage the consistency between generic edges and fine-grained edges, an edge aggregation and alignment loss is exploited. We evaluate our method on the public benchmark BSDS-RIND and several newly derived benchmarks, and achieve new state-of-the-art results. Our code, data, and models are publicly available at https://github.com/Daniellli/ECT.git.
Involution: Inverting the Inherence of Convolution for Visual Recognition
Convolution has been the core ingredient of modern neural networks, triggering the surge of deep learning in vision. In this work, we rethink the inherent principles of standard convolution for vision tasks, specifically spatial-agnostic and channel-specific. Instead, we present a novel atomic operation for deep neural networks by inverting the aforementioned design principles of convolution, coined as involution. We additionally demystify the recent popular self-attention operator and subsume it into our involution family as an over-complicated instantiation. The proposed involution operator could be leveraged as fundamental bricks to build the new generation of neural networks for visual recognition, powering different deep learning models on several prevalent benchmarks, including ImageNet classification, COCO detection and segmentation, together with Cityscapes segmentation. Our involution-based models improve the performance of convolutional baselines using ResNet-50 by up to 1.6% top-1 accuracy, 2.5% and 2.4% bounding box AP, and 4.7% mean IoU absolutely while compressing the computational cost to 66%, 65%, 72%, and 57% on the above benchmarks, respectively. Code and pre-trained models for all the tasks are available at https://github.com/d-li14/involution.
Optimal Weighted Convolution for Classification and Denosing
We introduce a novel weighted convolution operator that enhances traditional convolutional neural networks (CNNs) by integrating a spatial density function into the convolution operator. This extension enables the network to differentially weight neighbouring pixels based on their relative position to the reference pixel, improving spatial characterisation and feature extraction. The proposed operator maintains the same number of trainable parameters and is fully compatible with existing CNN architectures. Although developed for 2D image data, the framework is generalisable to signals on regular grids of arbitrary dimensions, such as 3D volumetric data or 1D time series. We propose an efficient implementation of the weighted convolution by pre-computing the density function and achieving execution times comparable to standard convolution layers. We evaluate our method on two deep learning tasks: image classification using the CIFAR-100 dataset [KH+09] and image denoising using the DIV2K dataset [AT17]. Experimental results with state-of-the-art classification (e.g., VGG [SZ15], ResNet [HZRS16]) and denoising (e.g., DnCNN [ZZC+17], NAFNet [CCZS22]) methods show that the weighted convolution improves performance with respect to standard convolution across different quantitative metrics. For example, VGG achieves an accuracy of 66.94% with weighted convolution versus 56.89% with standard convolution on the classification problem, while DnCNN improves the PSNR value from 20.17 to 22.63 on the denoising problem. All models were trained on the CINECA Leonardo cluster to reduce the execution time and improve the tuning of the density function values. The PyTorch implementation of the weighted convolution is publicly available at: https://github.com/cammarasana123/weightedConvolution2.0.
MgNO: Efficient Parameterization of Linear Operators via Multigrid
In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the i-th neuron in a nonlinear operator layer is defined by mathcal O_i(u) = sigmaleft( sum_j mathcal W_{ij} u + mathcal B_{ij}right). Here, mathcal W_{ij} denotes the bounded linear operator connecting j-th input neuron to i-th output neuron, and the bias mathcal B_{ij} takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
SelectionConv: Convolutional Neural Networks for Non-rectilinear Image Data
Convolutional Neural Networks have revolutionized vision applications. There are image domains and representations, however, that cannot be handled by standard CNNs (e.g., spherical images, superpixels). Such data are usually processed using networks and algorithms specialized for each type. In this work, we show that it may not always be necessary to use specialized neural networks to operate on such spaces. Instead, we introduce a new structured graph convolution operator that can copy 2D convolution weights, transferring the capabilities of already trained traditional CNNs to our new graph network. This network can then operate on any data that can be represented as a positional graph. By converting non-rectilinear data to a graph, we can apply these convolutions on these irregular image domains without requiring training on large domain-specific datasets. Results of transferring pre-trained image networks for segmentation, stylization, and depth prediction are demonstrated for a variety of such data forms.
Squeeze-and-Excitation Networks
The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and reduced the top-5 error to 2.251%, surpassing the winning entry of 2016 by a relative improvement of ~25%. Models and code are available at https://github.com/hujie-frank/SENet.
Generalized Convolution and Efficient Language Recognition
Convolution is a broadly useful operation with applications including signal processing, machine learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this operation is understood and implemented in more specialized forms, hiding commonalities and limiting usefulness. This paper formulates convolution in the common algebraic framework of semirings and semimodules and populates that framework with various representation types. One of those types is the grand abstract template and itself generalizes to the free semimodule monad. Other representations serve varied uses and performance trade-offs, with implementations calculated from simple and regular specifications. Of particular interest is Brzozowski's method for regular expression matching. Uncovering the method's essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership (such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data structure then provides an elegant and efficient alternative to syntax. Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with a variety of representations, and handles multivariate polynomials and power series with ease. Image convolution also falls out as a special case.
Demystify Transformers & Convolutions in Modern Image Deep Networks
Vision transformers have gained popularity recently, leading to the development of new vision backbones with improved features and consistent performance gains. However, these advancements are not solely attributable to novel feature transformation designs; certain benefits also arise from advanced network-level and block-level architectures. This paper aims to identify the real gains of popular convolution and attention operators through a detailed study. We find that the key difference among these feature transformation modules, such as attention or convolution, lies in their spatial feature aggregation approach, known as the "spatial token mixer" (STM). To facilitate an impartial comparison, we introduce a unified architecture to neutralize the impact of divergent network-level and block-level designs. Subsequently, various STMs are integrated into this unified framework for comprehensive comparative analysis. Our experiments on various tasks and an analysis of inductive bias show a significant performance boost due to advanced network-level and block-level designs, but performance differences persist among different STMs. Our detailed analysis also reveals various findings about different STMs, such as effective receptive fields and invariance tests. All models and codes used in this study are publicly available at https://github.com/OpenGVLab/STM-Evaluation.
Attentive Convolution: Unifying the Expressivity of Self-Attention with Convolutional Efficiency
Self-attention (SA) has become the cornerstone of modern vision backbones for its powerful expressivity over traditional Convolutions (Conv). However, its quadratic complexity remains a critical bottleneck for practical applications. Given that Conv offers linear complexity and strong visual priors, continuing efforts have been made to promote the renaissance of Conv. However, a persistent performance chasm remains, highlighting that these modernizations have not yet captured the intrinsic expressivity that defines SA. In this paper, we re-examine the design of the CNNs, directed by a key question: what principles give SA its edge over Conv? As a result, we reveal two fundamental insights that challenge the long-standing design intuitions in prior research (e.g., Receptive field). The two findings are: (1) Adaptive routing: SA dynamically regulates positional information flow according to semantic content, whereas Conv employs static kernels uniformly across all positions. (2) Lateral inhibition: SA induces score competition among token weighting, effectively suppressing redundancy and sharpening representations, whereas Conv filters lack such inhibitory dynamics and exhibit considerable redundancy. Based on this, we propose Attentive Convolution (ATConv), a principled reformulation of the convolutional operator that intrinsically injects these principles. Interestingly, with only 3times3 kernels, ATConv consistently outperforms various SA mechanisms in fundamental vision tasks. Building on ATConv, we introduce AttNet, a CNN family that can attain 84.4\% ImageNet-1K Top-1 accuracy with only 27M parameters. In diffusion-based image generation, replacing all SA with the proposed 3times 3 ATConv in SiT-XL/2 reduces ImageNet FID by 0.15 in 400k steps with faster sampling. Code is available at: github.com/price112/Attentive-Convolution.
Convolution Aware Initialization
Initialization of parameters in deep neural networks has been shown to have a big impact on the performance of the networks (Mishkin & Matas, 2015). The initialization scheme devised by He et al, allowed convolution activations to carry a constrained mean which allowed deep networks to be trained effectively (He et al., 2015a). Orthogonal initializations and more generally orthogonal matrices in standard recurrent networks have been proved to eradicate the vanishing and exploding gradient problem (Pascanu et al., 2012). Majority of current initialization schemes do not take fully into account the intrinsic structure of the convolution operator. Using the duality of the Fourier transform and the convolution operator, Convolution Aware Initialization builds orthogonal filters in the Fourier space, and using the inverse Fourier transform represents them in the standard space. With Convolution Aware Initialization we noticed not only higher accuracy and lower loss, but faster convergence. We achieve new state of the art on the CIFAR10 dataset, and achieve close to state of the art on various other tasks.
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
While it is widely known that neural networks are universal approximators of continuous functions, a less known and perhaps more powerful result is that a neural network with a single hidden layer can approximate accurately any nonlinear continuous operator. This universal approximation theorem is suggestive of the potential application of neural networks in learning nonlinear operators from data. However, the theorem guarantees only a small approximation error for a sufficient large network, and does not consider the important optimization and generalization errors. To realize this theorem in practice, we propose deep operator networks (DeepONets) to learn operators accurately and efficiently from a relatively small dataset. A DeepONet consists of two sub-networks, one for encoding the input function at a fixed number of sensors x_i, i=1,dots,m (branch net), and another for encoding the locations for the output functions (trunk net). We perform systematic simulations for identifying two types of operators, i.e., dynamic systems and partial differential equations, and demonstrate that DeepONet significantly reduces the generalization error compared to the fully-connected networks. We also derive theoretically the dependence of the approximation error in terms of the number of sensors (where the input function is defined) as well as the input function type, and we verify the theorem with computational results. More importantly, we observe high-order error convergence in our computational tests, namely polynomial rates (from half order to fourth order) and even exponential convergence with respect to the training dataset size.
GNOT: A General Neural Operator Transformer for Operator Learning
Learning partial differential equations' (PDEs) solution operators is an essential problem in machine learning. However, there are several challenges for learning operators in practical applications like the irregular mesh, multiple input functions, and complexity of the PDEs' solution. To address these challenges, we propose a general neural operator transformer (GNOT), a scalable and effective transformer-based framework for learning operators. By designing a novel heterogeneous normalized attention layer, our model is highly flexible to handle multiple input functions and irregular meshes. Besides, we introduce a geometric gating mechanism which could be viewed as a soft domain decomposition to solve the multi-scale problems. The large model capacity of the transformer architecture grants our model the possibility to scale to large datasets and practical problems. We conduct extensive experiments on multiple challenging datasets from different domains and achieve a remarkable improvement compared with alternative methods. Our code and data are publicly available at https://github.com/thu-ml/GNOT.
A Tour of Convolutional Networks Guided by Linear Interpreters
Convolutional networks are large linear systems divided into layers and connected by non-linear units. These units are the "articulations" that allow the network to adapt to the input. To understand how a network manages to solve a problem we must look at the articulated decisions in entirety. If we could capture the actions of non-linear units for a particular input, we would be able to replay the whole system back and forth as if it was always linear. It would also reveal the actions of non-linearities because the resulting linear system, a Linear Interpreter, depends on the input image. We introduce a hooking layer, called a LinearScope, which allows us to run the network and the linear interpreter in parallel. Its implementation is simple, flexible and efficient. From here we can make many curious inquiries: how do these linear systems look like? When the rows and columns of the transformation matrix are images, how do they look like? What type of basis do these linear transformations rely on? The answers depend on the problems presented, through which we take a tour to some popular architectures used for classification, super-resolution (SR) and image-to-image translation (I2I). For classification we observe that popular networks use a pixel-wise vote per class strategy and heavily rely on bias parameters. For SR and I2I we find that CNNs use wavelet-type basis similar to the human visual system. For I2I we reveal copy-move and template-creation strategies to generate outputs.
Choose a Transformer: Fourier or Galerkin
In this paper, we apply the self-attention from the state-of-the-art Transformer in Attention Is All You Need for the first time to a data-driven operator learning problem related to partial differential equations. An effort is put together to explain the heuristics of, and to improve the efficacy of the attention mechanism. By employing the operator approximation theory in Hilbert spaces, it is demonstrated for the first time that the softmax normalization in the scaled dot-product attention is sufficient but not necessary. Without softmax, the approximation capacity of a linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin projection layer-wise, and the estimate is independent with respect to the sequence length. A new layer normalization scheme mimicking the Petrov-Galerkin projection is proposed to allow a scaling to propagate through attention layers, which helps the model achieve remarkable accuracy in operator learning tasks with unnormalized data. Finally, we present three operator learning experiments, including the viscid Burgers' equation, an interface Darcy flow, and an inverse interface coefficient identification problem. The newly proposed simple attention-based operator learner, Galerkin Transformer, shows significant improvements in both training cost and evaluation accuracy over its softmax-normalized counterparts.
InceptionNeXt: When Inception Meets ConvNeXt
Inspired by the long-range modeling ability of ViTs, large-kernel convolutions are widely studied and adopted recently to enlarge the receptive field and improve model performance, like the remarkable work ConvNeXt which employs 7x7 depthwise convolution. Although such depthwise operator only consumes a few FLOPs, it largely harms the model efficiency on powerful computing devices due to the high memory access costs. For example, ConvNeXt-T has similar FLOPs with ResNet-50 but only achieves 60% throughputs when trained on A100 GPUs with full precision. Although reducing the kernel size of ConvNeXt can improve speed, it results in significant performance degradation. It is still unclear how to speed up large-kernel-based CNN models while preserving their performance. To tackle this issue, inspired by Inceptions, we propose to decompose large-kernel depthwise convolution into four parallel branches along channel dimension, i.e. small square kernel, two orthogonal band kernels, and an identity mapping. With this new Inception depthwise convolution, we build a series of networks, namely IncepitonNeXt, which not only enjoy high throughputs but also maintain competitive performance. For instance, InceptionNeXt-T achieves 1.6x higher training throughputs than ConvNeX-T, as well as attains 0.2% top-1 accuracy improvement on ImageNet-1K. We anticipate InceptionNeXt can serve as an economical baseline for future architecture design to reduce carbon footprint. Code is available at https://github.com/sail-sg/inceptionnext.
CascadedGaze: Efficiency in Global Context Extraction for Image Restoration
Image restoration tasks traditionally rely on convolutional neural networks. However, given the local nature of the convolutional operator, they struggle to capture global information. The promise of attention mechanisms in Transformers is to circumvent this problem, but it comes at the cost of intensive computational overhead. Many recent studies in image restoration have focused on solving the challenge of balancing performance and computational cost via Transformer variants. In this paper, we present CascadedGaze Network (CGNet), an encoder-decoder architecture that employs Global Context Extractor (GCE), a novel and efficient way to capture global information for image restoration. The GCE module leverages small kernels across convolutional layers to learn global dependencies, without requiring self-attention. Extensive experimental results show that our approach outperforms a range of state-of-the-art methods on denoising benchmark datasets including both real image denoising and synthetic image denoising, as well as on image deblurring task, while being more computationally efficient.
CondConv: Conditionally Parameterized Convolutions for Efficient Inference
Convolutional layers are one of the basic building blocks of modern deep neural networks. One fundamental assumption is that convolutional kernels should be shared for all examples in a dataset. We propose conditionally parameterized convolutions (CondConv), which learn specialized convolutional kernels for each example. Replacing normal convolutions with CondConv enables us to increase the size and capacity of a network, while maintaining efficient inference. We demonstrate that scaling networks with CondConv improves the performance and inference cost trade-off of several existing convolutional neural network architectures on both classification and detection tasks. On ImageNet classification, our CondConv approach applied to EfficientNet-B0 achieves state-of-the-art performance of 78.3% accuracy with only 413M multiply-adds. Code and checkpoints for the CondConv Tensorflow layer and CondConv-EfficientNet models are available at: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv.
SMPConv: Self-moving Point Representations for Continuous Convolution
Continuous convolution has recently gained prominence due to its ability to handle irregularly sampled data and model long-term dependency. Also, the promising experimental results of using large convolutional kernels have catalyzed the development of continuous convolution since they can construct large kernels very efficiently. Leveraging neural networks, more specifically multilayer perceptrons (MLPs), is by far the most prevalent approach to implementing continuous convolution. However, there are a few drawbacks, such as high computational costs, complex hyperparameter tuning, and limited descriptive power of filters. This paper suggests an alternative approach to building a continuous convolution without neural networks, resulting in more computationally efficient and improved performance. We present self-moving point representations where weight parameters freely move, and interpolation schemes are used to implement continuous functions. When applied to construct convolutional kernels, the experimental results have shown improved performance with drop-in replacement in the existing frameworks. Due to its lightweight structure, we are first to demonstrate the effectiveness of continuous convolution in a large-scale setting, e.g., ImageNet, presenting the improvements over the prior arts. Our code is available on https://github.com/sangnekim/SMPConv
Mesh-Informed Neural Operator : A Transformer Generative Approach
Generative models in function spaces, situated at the intersection of generative modeling and operator learning, are attracting increasing attention due to their immense potential in diverse scientific and engineering applications. While functional generative models are theoretically domain- and discretization-agnostic, current implementations heavily rely on the Fourier Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains. To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator (MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a principled, domain- and discretization-agnostic backbone for generative modeling in function spaces. This advancement significantly expands the scope of such models to more diverse applications in generative, inverse, and regression tasks. Furthermore, MINO provides a unified perspective on integrating neural operators with general advanced deep learning architectures. Finally, we introduce a suite of standardized evaluation metrics that enable objective comparison of functional generative models, addressing another critical gap in the field.
Neural Inverse Operators for Solving PDE Inverse Problems
A large class of inverse problems for PDEs are only well-defined as mappings from operators to functions. Existing operator learning frameworks map functions to functions and need to be modified to learn inverse maps from data. We propose a novel architecture termed Neural Inverse Operators (NIOs) to solve these PDE inverse problems. Motivated by the underlying mathematical structure, NIO is based on a suitable composition of DeepONets and FNOs to approximate mappings from operators to functions. A variety of experiments are presented to demonstrate that NIOs significantly outperform baselines and solve PDE inverse problems robustly, accurately and are several orders of magnitude faster than existing direct and PDE-constrained optimization methods.
Rethinking the Inception Architecture for Computer Vision
Convolutional networks are at the core of most state-of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error on the validation set (3.6% error on the test set) and 17.3% top-1 error on the validation set.
Super-Resolution Neural Operator
We propose Super-resolution Neural Operator (SRNO), a deep operator learning framework that can resolve high-resolution (HR) images at arbitrary scales from the low-resolution (LR) counterparts. Treating the LR-HR image pairs as continuous functions approximated with different grid sizes, SRNO learns the mapping between the corresponding function spaces. From the perspective of approximation theory, SRNO first embeds the LR input into a higher-dimensional latent representation space, trying to capture sufficient basis functions, and then iteratively approximates the implicit image function with a kernel integral mechanism, followed by a final dimensionality reduction step to generate the RGB representation at the target coordinates. The key characteristics distinguishing SRNO from prior continuous SR works are: 1) the kernel integral in each layer is efficiently implemented via the Galerkin-type attention, which possesses non-local properties in the spatial domain and therefore benefits the grid-free continuum; and 2) the multilayer attention architecture allows for the dynamic latent basis update, which is crucial for SR problems to "hallucinate" high-frequency information from the LR image. Experiments show that SRNO outperforms existing continuous SR methods in terms of both accuracy and running time. Our code is at https://github.com/2y7c3/Super-Resolution-Neural-Operator
A priori compression of convolutional neural networks for wave simulators
Convolutional neural networks are now seeing widespread use in a variety of fields, including image classification, facial and object recognition, medical imaging analysis, and many more. In addition, there are applications such as physics-informed simulators in which accurate forecasts in real time with a minimal lag are required. The present neural network designs include millions of parameters, which makes it difficult to install such complex models on devices that have limited memory. Compression techniques might be able to resolve these issues by decreasing the size of CNN models that are created by reducing the number of parameters that contribute to the complexity of the models. We propose a compressed tensor format of convolutional layer, a priori, before the training of the neural network. 3-way kernels or 2-way kernels in convolutional layers are replaced by one-way fiters. The overfitting phenomena will be reduced also. The time needed to make predictions or time required for training using the original Convolutional Neural Networks model would be cut significantly if there were fewer parameters to deal with. In this paper we present a method of a priori compressing convolutional neural networks for finite element (FE) predictions of physical data. Afterwards we validate our a priori compressed models on physical data from a FE model solving a 2D wave equation. We show that the proposed convolutinal compression technique achieves equivalent performance as classical convolutional layers with fewer trainable parameters and lower memory footprint.
Fast Sampling of Diffusion Models via Operator Learning
Diffusion models have found widespread adoption in various areas. However, their sampling process is slow because it requires hundreds to thousands of network evaluations to emulate a continuous process defined by differential equations. In this work, we use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models. Compared to other fast sampling methods that have a sequential nature, we are the first to propose parallel decoding method that generates images with only one model forward pass. We propose diffusion model sampling with neural operator (DSNO) that maps the initial condition, i.e., Gaussian distribution, to the continuous-time solution trajectory of the reverse diffusion process. To model the temporal correlations along the trajectory, we introduce temporal convolution layers that are parameterized in the Fourier space into the given diffusion model backbone. We show our method achieves state-of-the-art FID of 4.12 for CIFAR-10 and 8.35 for ImageNet-64 in the one-model-evaluation setting.
Neural Operator: Learning Maps Between Function Spaces
The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.
Stochastic Process Learning via Operator Flow Matching
Expanding on neural operators, we propose a novel framework for stochastic process learning across arbitrary domains. In particular, we develop operator flow matching (OFM) for learning stochastic process priors on function spaces. OFM provides the probability density of the values of any collection of points and enables mathematically tractable functional regression at new points with mean and density estimation. Our method outperforms state-of-the-art models in stochastic process learning, functional regression, and prior learning.
Fully Convolutional Networks for Semantic Segmentation
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves improved segmentation of PASCAL VOC (30% relative improvement to 67.2% mean IU on 2012), NYUDv2, SIFT Flow, and PASCAL-Context, while inference takes one tenth of a second for a typical image.
What's in a Prior? Learned Proximal Networks for Inverse Problems
Proximal operators are ubiquitous in inverse problems, commonly appearing as part of algorithmic strategies to regularize problems that are otherwise ill-posed. Modern deep learning models have been brought to bear for these tasks too, as in the framework of plug-and-play or deep unrolling, where they loosely resemble proximal operators. Yet, something essential is lost in employing these purely data-driven approaches: there is no guarantee that a general deep network represents the proximal operator of any function, nor is there any characterization of the function for which the network might provide some approximate proximal. This not only makes guaranteeing convergence of iterative schemes challenging but, more fundamentally, complicates the analysis of what has been learned by these networks about their training data. Herein we provide a framework to develop learned proximal networks (LPN), prove that they provide exact proximal operators for a data-driven nonconvex regularizer, and show how a new training strategy, dubbed proximal matching, provably promotes the recovery of the log-prior of the true data distribution. Such LPN provide general, unsupervised, expressive proximal operators that can be used for general inverse problems with convergence guarantees. We illustrate our results in a series of cases of increasing complexity, demonstrating that these models not only result in state-of-the-art performance, but provide a window into the resulting priors learned from data.
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
Imposing orthogonality on the layers of neural networks is known to facilitate the learning by limiting the exploding/vanishing of the gradient; decorrelate the features; improve the robustness. This paper studies the theoretical properties of orthogonal convolutional layers.We establish necessary and sufficient conditions on the layer architecture guaranteeing the existence of an orthogonal convolutional transform. The conditions prove that orthogonal convolutional transforms exist for almost all architectures used in practice for 'circular' padding.We also exhibit limitations with 'valid' boundary conditions and 'same' boundary conditions with zero-padding.Recently, a regularization term imposing the orthogonality of convolutional layers has been proposed, and impressive empirical results have been obtained in different applications (Wang et al. 2020).The second motivation of the present paper is to specify the theory behind this.We make the link between this regularization term and orthogonality measures. In doing so, we show that this regularization strategy is stable with respect to numerical and optimization errors and that, in the presence of small errors and when the size of the signal/image is large, the convolutional layers remain close to isometric.The theoretical results are confirmed with experiments and the landscape of the regularization term is studied. Experiments on real data sets show that when orthogonality is used to enforce robustness, the parameter multiplying the regularization termcan be used to tune a tradeoff between accuracy and orthogonality, for the benefit of both accuracy and robustness.Altogether, the study guarantees that the regularization proposed in Wang et al. (2020) is an efficient, flexible and stable numerical strategy to learn orthogonal convolutional layers.
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
Large kernels make standard convolutional neural networks (CNNs) great again over transformer architectures in various vision tasks. Nonetheless, recent studies meticulously designed around increasing kernel size have shown diminishing returns or stagnation in performance. Thus, the hidden factors of large kernel convolution that affect model performance remain unexplored. In this paper, we reveal that the key hidden factors of large kernels can be summarized as two separate components: extracting features at a certain granularity and fusing features by multiple pathways. To this end, we leverage the multi-path long-distance sparse dependency relationship to enhance feature utilization via the proposed Shiftwise (SW) convolution operator with a pure CNN architecture. In a wide range of vision tasks such as classification, segmentation, and detection, SW surpasses state-of-the-art transformers and CNN architectures, including SLaK and UniRepLKNet. More importantly, our experiments demonstrate that 3 times 3 convolutions can replace large convolutions in existing large kernel CNNs to achieve comparable effects, which may inspire follow-up works. Code and all the models at https://github.com/lidc54/shift-wiseConv.
Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks
To design fast neural networks, many works have been focusing on reducing the number of floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does not necessarily lead to a similar level of reduction in latency. This mainly stems from inefficiently low floating-point operations per second (FLOPS). To achieve faster networks, we revisit popular operators and demonstrate that such low FLOPS is mainly due to frequent memory access of the operators, especially the depthwise convolution. We hence propose a novel partial convolution (PConv) that extracts spatial features more efficiently, by cutting down redundant computation and memory access simultaneously. Building upon our PConv, we further propose FasterNet, a new family of neural networks, which attains substantially higher running speed than others on a wide range of devices, without compromising on accuracy for various vision tasks. For example, on ImageNet-1k, our tiny FasterNet-T0 is 2.8times, 3.3times, and 2.4times faster than MobileViT-XXS on GPU, CPU, and ARM processors, respectively, while being 2.9% more accurate. Our large FasterNet-L achieves impressive 83.5% top-1 accuracy, on par with the emerging Swin-B, while having 36% higher inference throughput on GPU, as well as saving 37% compute time on CPU. Code is available at https://github.com/JierunChen/FasterNet.
Design of Efficient Convolutional Layers using Single Intra-channel Convolution, Topological Subdivisioning and Spatial "Bottleneck" Structure
Deep convolutional neural networks achieve remarkable visual recognition performance, at the cost of high computational complexity. In this paper, we have a new design of efficient convolutional layers based on three schemes. The 3D convolution operation in a convolutional layer can be considered as performing spatial convolution in each channel and linear projection across channels simultaneously. By unravelling them and arranging the spatial convolution sequentially, the proposed layer is composed of a single intra-channel convolution, of which the computation is negligible, and a linear channel projection. A topological subdivisioning is adopted to reduce the connection between the input channels and output channels. Additionally, we also introduce a spatial "bottleneck" structure that utilizes a convolution-projection-deconvolution pipeline to take advantage of the correlation between adjacent pixels in the input. Our experiments demonstrate that the proposed layers remarkably outperform the standard convolutional layers with regard to accuracy/complexity ratio. Our models achieve similar accuracy to VGG, ResNet-50, ResNet-101 while requiring 42, 4.5, 6.5 times less computation respectively.
CKGConv: General Graph Convolution with Continuous Kernels
The existing definitions of graph convolution, either from spatial or spectral perspectives, are inflexible and not unified. Defining a general convolution operator in the graph domain is challenging due to the lack of canonical coordinates, the presence of irregular structures, and the properties of graph symmetries. In this work, we propose a novel and general graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding. We name this Continuous Kernel Graph Convolution (CKGConv). Theoretically, we demonstrate that CKGConv is flexible and expressive. CKGConv encompasses many existing graph convolutions, and exhibits a stronger expressiveness, as powerful as graph transformers in terms of distinguishing non-isomorphic graphs. Empirically, we show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets. The code and models are publicly available at https://github.com/networkslab/CKGConv.
Scaling Up Computer Vision Neural Networks Using Fast Fourier Transform
Deep Learning-based Computer Vision field has recently been trying to explore larger kernels for convolution to effectively scale up Convolutional Neural Networks. Simultaneously, new paradigm of models such as Vision Transformers find it difficult to scale up to larger higher resolution images due to their quadratic complexity in terms of input sequence. In this report, Fast Fourier Transform is utilised in various ways to provide some solutions to these issues.
Non-local Neural Networks
Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code is available at https://github.com/facebookresearch/video-nonlocal-net .
Operator Learning Meets Numerical Analysis: Improving Neural Networks through Iterative Methods
Deep neural networks, despite their success in numerous applications, often function without established theoretical foundations. In this paper, we bridge this gap by drawing parallels between deep learning and classical numerical analysis. By framing neural networks as operators with fixed points representing desired solutions, we develop a theoretical framework grounded in iterative methods for operator equations. Under defined conditions, we present convergence proofs based on fixed point theory. We demonstrate that popular architectures, such as diffusion models and AlphaFold, inherently employ iterative operator learning. Empirical assessments highlight that performing iterations through network operators improves performance. We also introduce an iterative graph neural network, PIGN, that further demonstrates benefits of iterations. Our work aims to enhance the understanding of deep learning by merging insights from numerical analysis, potentially guiding the design of future networks with clearer theoretical underpinnings and improved performance.
Kolmogorov-Arnold Convolutions: Design Principles and Empirical Studies
The emergence of Kolmogorov-Arnold Networks (KANs) has sparked significant interest and debate within the scientific community. This paper explores the application of KANs in the domain of computer vision (CV). We examine the convolutional version of KANs, considering various nonlinearity options beyond splines, such as Wavelet transforms and a range of polynomials. We propose a parameter-efficient design for Kolmogorov-Arnold convolutional layers and a parameter-efficient finetuning algorithm for pre-trained KAN models, as well as KAN convolutional versions of self-attention and focal modulation layers. We provide empirical evaluations conducted on MNIST, CIFAR10, CIFAR100, Tiny ImageNet, ImageNet1k, and HAM10000 datasets for image classification tasks. Additionally, we explore segmentation tasks, proposing U-Net-like architectures with KAN convolutions, and achieving state-of-the-art results on BUSI, GlaS, and CVC datasets. We summarized all of our findings in a preliminary design guide of KAN convolutional models for computer vision tasks. Furthermore, we investigate regularization techniques for KANs. All experimental code and implementations of convolutional layers and models, pre-trained on ImageNet1k weights are available on GitHub via this https://github.com/IvanDrokin/torch-conv-kan
Kronecker Attention Networks
Attention operators have been applied on both 1-D data like texts and higher-order data such as images and videos. Use of attention operators on high-order data requires flattening of the spatial or spatial-temporal dimensions into a vector, which is assumed to follow a multivariate normal distribution. This not only incurs excessive requirements on computational resources, but also fails to preserve structures in data. In this work, we propose to avoid flattening by assuming the data follow matrix-variate normal distributions. Based on this new view, we develop Kronecker attention operators (KAOs) that operate on high-order tensor data directly. More importantly, the proposed KAOs lead to dramatic reductions in computational resources. Experimental results show that our methods reduce the amount of required computational resources by a factor of hundreds, with larger factors for higher-dimensional and higher-order data. Results also show that networks with KAOs outperform models without attention, while achieving competitive performance as those with original attention operators.
Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
Defects of Convolutional Decoder Networks in Frequency Representation
In this paper, we prove representation bottlenecks of a cascaded convolutional decoder network, considering the capacity of representing different frequency components of an input sample. We conduct the discrete Fourier transform on each channel of the feature map in an intermediate layer of the decoder network. Then, we introduce the rule of the forward propagation of such intermediate-layer spectrum maps, which is equivalent to the forward propagation of feature maps through a convolutional layer. Based on this, we find that each frequency component in the spectrum map is forward propagated independently with other frequency components. Furthermore, we prove two bottlenecks in representing feature spectrums. First, we prove that the convolution operation, the zero-padding operation, and a set of other settings all make a convolutional decoder network more likely to weaken high-frequency components. Second, we prove that the upsampling operation generates a feature spectrum, in which strong signals repetitively appears at certain frequencies.
The Power of Linear Combinations: Learning with Random Convolutions
Following the traditional paradigm of convolutional neural networks (CNNs), modern CNNs manage to keep pace with more recent, for example transformer-based, models by not only increasing model depth and width but also the kernel size. This results in large amounts of learnable model parameters that need to be handled during training. While following the convolutional paradigm with the according spatial inductive bias, we question the significance of learned convolution filters. In fact, our findings demonstrate that many contemporary CNN architectures can achieve high test accuracies without ever updating randomly initialized (spatial) convolution filters. Instead, simple linear combinations (implemented through efficient 1times 1 convolutions) suffice to effectively recombine even random filters into expressive network operators. Furthermore, these combinations of random filters can implicitly regularize the resulting operations, mitigating overfitting and enhancing overall performance and robustness. Conversely, retaining the ability to learn filter updates can impair network performance. Lastly, although we only observe relatively small gains from learning 3times 3 convolutions, the learning gains increase proportionally with kernel size, owing to the non-idealities of the independent and identically distributed (i.i.d.) nature of default initialization techniques.
Training Transformers with 4-bit Integers
Quantizing the activation, weight, and gradient to 4-bit is promising to accelerate neural network training. However, existing 4-bit training methods require custom numerical formats which are not supported by contemporary hardware. In this work, we propose a training method for transformers with all matrix multiplications implemented with the INT4 arithmetic. Training with an ultra-low INT4 precision is challenging. To achieve this, we carefully analyze the specific structures of activation and gradients in transformers to propose dedicated quantizers for them. For forward propagation, we identify the challenge of outliers and propose a Hadamard quantizer to suppress the outliers. For backpropagation, we leverage the structural sparsity of gradients by proposing bit splitting and leverage score sampling techniques to quantize gradients accurately. Our algorithm achieves competitive accuracy on a wide range of tasks including natural language understanding, machine translation, and image classification. Unlike previous 4-bit training methods, our algorithm can be implemented on the current generation of GPUs. Our prototypical linear operator implementation is up to 2.2 times faster than the FP16 counterparts and speeds up the training by up to 35.1%.
Adaptive Frequency Filters As Efficient Global Token Mixers
Recent vision transformers, large-kernel CNNs and MLPs have attained remarkable successes in broad vision tasks thanks to their effective information fusion in the global scope. However, their efficient deployments, especially on mobile devices, still suffer from noteworthy challenges due to the heavy computational costs of self-attention mechanisms, large kernels, or fully connected layers. In this work, we apply conventional convolution theorem to deep learning for addressing this and reveal that adaptive frequency filters can serve as efficient global token mixers. With this insight, we propose Adaptive Frequency Filtering (AFF) token mixer. This neural operator transfers a latent representation to the frequency domain via a Fourier transform and performs semantic-adaptive frequency filtering via an elementwise multiplication, which mathematically equals to a token mixing operation in the original latent space with a dynamic convolution kernel as large as the spatial resolution of this latent representation. We take AFF token mixers as primary neural operators to build a lightweight neural network, dubbed AFFNet. Extensive experiments demonstrate the effectiveness of our proposed AFF token mixer and show that AFFNet achieve superior accuracy and efficiency trade-offs compared to other lightweight network designs on broad visual tasks, including visual recognition and dense prediction tasks.
A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.
SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition
The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].
Expediting Large-Scale Vision Transformer for Dense Prediction without Fine-tuning
Vision transformers have recently achieved competitive results across various vision tasks but still suffer from heavy computation costs when processing a large number of tokens. Many advanced approaches have been developed to reduce the total number of tokens in large-scale vision transformers, especially for image classification tasks. Typically, they select a small group of essential tokens according to their relevance with the class token, then fine-tune the weights of the vision transformer. Such fine-tuning is less practical for dense prediction due to the much heavier computation and GPU memory cost than image classification. In this paper, we focus on a more challenging problem, i.e., accelerating large-scale vision transformers for dense prediction without any additional re-training or fine-tuning. In response to the fact that high-resolution representations are necessary for dense prediction, we present two non-parametric operators, a token clustering layer to decrease the number of tokens and a token reconstruction layer to increase the number of tokens. The following steps are performed to achieve this: (i) we use the token clustering layer to cluster the neighboring tokens together, resulting in low-resolution representations that maintain the spatial structures; (ii) we apply the following transformer layers only to these low-resolution representations or clustered tokens; and (iii) we use the token reconstruction layer to re-create the high-resolution representations from the refined low-resolution representations. The results obtained by our method are promising on five dense prediction tasks, including object detection, semantic segmentation, panoptic segmentation, instance segmentation, and depth estimation.
Optimal Density Functions for Weighted Convolution in Learning Models
The paper introduces the weighted convolution, a novel approach to the convolution for signals defined on regular grids (e.g., 2D images) through the application of an optimal density function to scale the contribution of neighbouring pixels based on their distance from the central pixel. This choice differs from the traditional uniform convolution, which treats all neighbouring pixels equally. Our weighted convolution can be applied to convolutional neural network problems to improve the approximation accuracy. Given a convolutional network, we define a framework to compute the optimal density function through a minimisation model. The framework separates the optimisation of the convolutional kernel weights (using stochastic gradient descent) from the optimisation of the density function (using DIRECT-L). Experimental results on a learning model for an image-to-image task (e.g., image denoising) show that the weighted convolution significantly reduces the loss (up to 53% improvement) and increases the test accuracy compared to standard convolution. While this method increases execution time by 11%, it is robust across several hyperparameters of the learning model. Future work will apply the weighted convolution to real-case 2D and 3D image convolutional learning problems.
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
In this paper, we construct a mixture of neural operators (MoNOs) between function spaces whose complexity is distributed over a network of expert neural operators (NOs), with each NO satisfying parameter scaling restrictions. Our main result is a distributed universal approximation theorem guaranteeing that any Lipschitz non-linear operator between L^2([0,1]^d) spaces can be approximated uniformly over the Sobolev unit ball therein, to any given varepsilon>0 accuracy, by an MoNO while satisfying the constraint that: each expert NO has a depth, width, and rank of O(varepsilon^{-1}). Naturally, our result implies that the required number of experts must be large, however, each NO is guaranteed to be small enough to be loadable into the active memory of most computers for reasonable accuracies varepsilon. During our analysis, we also obtain new quantitative expression rates for classical NOs approximating uniformly continuous non-linear operators uniformly on compact subsets of L^2([0,1]^d).
SPANet: Frequency-balancing Token Mixer using Spectral Pooling Aggregation Modulation
Recent studies show that self-attentions behave like low-pass filters (as opposed to convolutions) and enhancing their high-pass filtering capability improves model performance. Contrary to this idea, we investigate existing convolution-based models with spectral analysis and observe that improving the low-pass filtering in convolution operations also leads to performance improvement. To account for this observation, we hypothesize that utilizing optimal token mixers that capture balanced representations of both high- and low-frequency components can enhance the performance of models. We verify this by decomposing visual features into the frequency domain and combining them in a balanced manner. To handle this, we replace the balancing problem with a mask filtering problem in the frequency domain. Then, we introduce a novel token-mixer named SPAM and leverage it to derive a MetaFormer model termed as SPANet. Experimental results show that the proposed method provides a way to achieve this balance, and the balanced representations of both high- and low-frequency components can improve the performance of models on multiple computer vision tasks. Our code is available at https://doranlyong.github.io/projects/spanet/{https://doranlyong.github.io/projects/spanet/}.
Striving for Simplicity: The All Convolutional Net
Most modern convolutional neural networks (CNNs) used for object recognition are built using the same principles: Alternating convolution and max-pooling layers followed by a small number of fully connected layers. We re-evaluate the state of the art for object recognition from small images with convolutional networks, questioning the necessity of different components in the pipeline. We find that max-pooling can simply be replaced by a convolutional layer with increased stride without loss in accuracy on several image recognition benchmarks. Following this finding -- and building on other recent work for finding simple network structures -- we propose a new architecture that consists solely of convolutional layers and yields competitive or state of the art performance on several object recognition datasets (CIFAR-10, CIFAR-100, ImageNet). To analyze the network we introduce a new variant of the "deconvolution approach" for visualizing features learned by CNNs, which can be applied to a broader range of network structures than existing approaches.
Fully Convolutional Networks for Semantic Segmentation
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a novel architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes one third of a second for a typical image.
Quantizing deep convolutional networks for efficient inference: A whitepaper
We present an overview of techniques for quantizing convolutional neural networks for inference with integer weights and activations. Per-channel quantization of weights and per-layer quantization of activations to 8-bits of precision post-training produces classification accuracies within 2% of floating point networks for a wide variety of CNN architectures. Model sizes can be reduced by a factor of 4 by quantizing weights to 8-bits, even when 8-bit arithmetic is not supported. This can be achieved with simple, post training quantization of weights.We benchmark latencies of quantized networks on CPUs and DSPs and observe a speedup of 2x-3x for quantized implementations compared to floating point on CPUs. Speedups of up to 10x are observed on specialized processors with fixed point SIMD capabilities, like the Qualcomm QDSPs with HVX. Quantization-aware training can provide further improvements, reducing the gap to floating point to 1% at 8-bit precision. Quantization-aware training also allows for reducing the precision of weights to four bits with accuracy losses ranging from 2% to 10%, with higher accuracy drop for smaller networks.We introduce tools in TensorFlow and TensorFlowLite for quantizing convolutional networks and review best practices for quantization-aware training to obtain high accuracy with quantized weights and activations. We recommend that per-channel quantization of weights and per-layer quantization of activations be the preferred quantization scheme for hardware acceleration and kernel optimization. We also propose that future processors and hardware accelerators for optimized inference support precisions of 4, 8 and 16 bits.
HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions
Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution (g^nConv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. g^nConv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and larger model sizes. Apart from the effectiveness in visual encoders, we also show g^nConv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that g^nConv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet
High-Performance Neural Networks for Visual Object Classification
We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better than more shallow ones. Learning is surprisingly rapid. NORB is completely trained within five epochs. Test error rates on MNIST drop to 2.42%, 0.97% and 0.48% after 1, 3 and 17 epochs, respectively.
MLP-Mixer: An all-MLP Architecture for Vision
Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied independently to image patches (i.e. "mixing" the per-location features), and one with MLPs applied across patches (i.e. "mixing" spatial information). When trained on large datasets, or with modern regularization schemes, MLP-Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable to state-of-the-art models. We hope that these results spark further research beyond the realms of well established CNNs and Transformers.
ViTO: Vision Transformer-Operator
We combine vision transformers with operator learning to solve diverse inverse problems described by partial differential equations (PDEs). Our approach, named ViTO, combines a U-Net based architecture with a vision transformer. We apply ViTO to solve inverse PDE problems of increasing complexity, namely for the wave equation, the Navier-Stokes equations and the Darcy equation. We focus on the more challenging case of super-resolution, where the input dataset for the inverse problem is at a significantly coarser resolution than the output. The results we obtain are comparable or exceed the leading operator network benchmarks in terms of accuracy. Furthermore, ViTO`s architecture has a small number of trainable parameters (less than 10% of the leading competitor), resulting in a performance speed-up of over 5x when averaged over the various test cases.
Inceptive Transformers: Enhancing Contextual Representations through Multi-Scale Feature Learning Across Domains and Languages
Encoder transformer models compress information from all tokens in a sequence into a single [CLS] token to represent global context. This approach risks diluting fine-grained or hierarchical features, leading to information loss in downstream tasks where local patterns are important. To remedy this, we propose a lightweight architectural enhancement: an inception-style 1-D convolution module that sits on top of the transformer layer and augments token representations with multi-scale local features. This enriched feature space is then processed by a self-attention layer that dynamically weights tokens based on their task relevance. Experiments on five diverse tasks show that our framework consistently improves general-purpose, domain-specific, and multilingual models, outperforming baselines by 1% to 14% while maintaining efficiency. Ablation studies show that multi-scale convolution performs better than any single kernel and that the self-attention layer is critical for performance.
Fully 1times1 Convolutional Network for Lightweight Image Super-Resolution
Deep models have achieved significant process on single image super-resolution (SISR) tasks, in particular large models with large kernel (3times3 or more). However, the heavy computational footprint of such models prevents their deployment in real-time, resource-constrained environments. Conversely, 1times1 convolutions bring substantial computational efficiency, but struggle with aggregating local spatial representations, an essential capability to SISR models. In response to this dichotomy, we propose to harmonize the merits of both 3times3 and 1times1 kernels, and exploit a great potential for lightweight SISR tasks. Specifically, we propose a simple yet effective fully 1times1 convolutional network, named Shift-Conv-based Network (SCNet). By incorporating a parameter-free spatial-shift operation, it equips the fully 1times1 convolutional network with powerful representation capability while impressive computational efficiency. Extensive experiments demonstrate that SCNets, despite its fully 1times1 convolutional structure, consistently matches or even surpasses the performance of existing lightweight SR models that employ regular convolutions.
Visual Transformers: Token-based Image Representation and Processing for Computer Vision
Computer vision has achieved remarkable success by (a) representing images as uniformly-arranged pixel arrays and (b) convolving highly-localized features. However, convolutions treat all image pixels equally regardless of importance; explicitly model all concepts across all images, regardless of content; and struggle to relate spatially-distant concepts. In this work, we challenge this paradigm by (a) representing images as semantic visual tokens and (b) running transformers to densely model token relationships. Critically, our Visual Transformer operates in a semantic token space, judiciously attending to different image parts based on context. This is in sharp contrast to pixel-space transformers that require orders-of-magnitude more compute. Using an advanced training recipe, our VTs significantly outperform their convolutional counterparts, raising ResNet accuracy on ImageNet top-1 by 4.6 to 7 points while using fewer FLOPs and parameters. For semantic segmentation on LIP and COCO-stuff, VT-based feature pyramid networks (FPN) achieve 0.35 points higher mIoU while reducing the FPN module's FLOPs by 6.5x.
Local Relation Networks for Image Recognition
The convolution layer has been the dominant feature extractor in computer vision for years. However, the spatial aggregation in convolution is basically a pattern matching process that applies fixed filters which are inefficient at modeling visual elements with varying spatial distributions. This paper presents a new image feature extractor, called the local relation layer, that adaptively determines aggregation weights based on the compositional relationship of local pixel pairs. With this relational approach, it can composite visual elements into higher-level entities in a more efficient manner that benefits semantic inference. A network built with local relation layers, called the Local Relation Network (LR-Net), is found to provide greater modeling capacity than its counterpart built with regular convolution on large-scale recognition tasks such as ImageNet classification.
Improved Regularization of Convolutional Neural Networks with Cutout
Convolutional neural networks are capable of learning powerful representational spaces, which are necessary for tackling complex learning tasks. However, due to the model capacity required to capture such representations, they are often susceptible to overfitting and therefore require proper regularization in order to generalize well. In this paper, we show that the simple regularization technique of randomly masking out square regions of input during training, which we call cutout, can be used to improve the robustness and overall performance of convolutional neural networks. Not only is this method extremely easy to implement, but we also demonstrate that it can be used in conjunction with existing forms of data augmentation and other regularizers to further improve model performance. We evaluate this method by applying it to current state-of-the-art architectures on the CIFAR-10, CIFAR-100, and SVHN datasets, yielding new state-of-the-art results of 2.56%, 15.20%, and 1.30% test error respectively. Code is available at https://github.com/uoguelph-mlrg/Cutout
Unsupervised Learning by Predicting Noise
Convolutional neural networks provide visual features that perform remarkably well in many computer vision applications. However, training these networks requires significant amounts of supervision. This paper introduces a generic framework to train deep networks, end-to-end, with no supervision. We propose to fix a set of target representations, called Noise As Targets (NAT), and to constrain the deep features to align to them. This domain agnostic approach avoids the standard unsupervised learning issues of trivial solutions and collapsing of features. Thanks to a stochastic batch reassignment strategy and a separable square loss function, it scales to millions of images. The proposed approach produces representations that perform on par with state-of-the-art unsupervised methods on ImageNet and Pascal VOC.
No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects
Convolutional neural networks (CNNs) have made resounding success in many computer vision tasks such as image classification and object detection. However, their performance degrades rapidly on tougher tasks where images are of low resolution or objects are small. In this paper, we point out that this roots in a defective yet common design in existing CNN architectures, namely the use of strided convolution and/or pooling layers, which results in a loss of fine-grained information and learning of less effective feature representations. To this end, we propose a new CNN building block called SPD-Conv in place of each strided convolution layer and each pooling layer (thus eliminates them altogether). SPD-Conv is comprised of a space-to-depth (SPD) layer followed by a non-strided convolution (Conv) layer, and can be applied in most if not all CNN architectures. We explain this new design under two most representative computer vision tasks: object detection and image classification. We then create new CNN architectures by applying SPD-Conv to YOLOv5 and ResNet, and empirically show that our approach significantly outperforms state-of-the-art deep learning models, especially on tougher tasks with low-resolution images and small objects. We have open-sourced our code at https://github.com/LabSAINT/SPD-Conv.
Interpret Vision Transformers as ConvNets with Dynamic Convolutions
There has been a debate about the superiority between vision Transformers and ConvNets, serving as the backbone of computer vision models. Although they are usually considered as two completely different architectures, in this paper, we interpret vision Transformers as ConvNets with dynamic convolutions, which enables us to characterize existing Transformers and dynamic ConvNets in a unified framework and compare their design choices side by side. In addition, our interpretation can also guide the network design as researchers now can consider vision Transformers from the design space of ConvNets and vice versa. We demonstrate such potential through two specific studies. First, we inspect the role of softmax in vision Transformers as the activation function and find it can be replaced by commonly used ConvNets modules, such as ReLU and Layer Normalization, which results in a faster convergence rate and better performance. Second, following the design of depth-wise convolution, we create a corresponding depth-wise vision Transformer that is more efficient with comparable performance. The potential of the proposed unified interpretation is not limited to the given examples and we hope it can inspire the community and give rise to more advanced network architectures.
Understanding Deep Image Representations by Inverting Them
Image representations, from SIFT and Bag of Visual Words to Convolutional Neural Networks (CNNs), are a crucial component of almost any image understanding system. Nevertheless, our understanding of them remains limited. In this paper we conduct a direct analysis of the visual information contained in representations by asking the following question: given an encoding of an image, to which extent is it possible to reconstruct the image itself? To answer this question we contribute a general framework to invert representations. We show that this method can invert representations such as HOG and SIFT more accurately than recent alternatives while being applicable to CNNs too. We then use this technique to study the inverse of recent state-of-the-art CNN image representations for the first time. Among our findings, we show that several layers in CNNs retain photographically accurate information about the image, with different degrees of geometric and photometric invariance.
Scaling Spherical CNNs
Spherical CNNs generalize CNNs to functions on the sphere, by using spherical convolutions as the main linear operation. The most accurate and efficient way to compute spherical convolutions is in the spectral domain (via the convolution theorem), which is still costlier than the usual planar convolutions. For this reason, applications of spherical CNNs have so far been limited to small problems that can be approached with low model capacity. In this work, we show how spherical CNNs can be scaled for much larger problems. To achieve this, we make critical improvements including novel variants of common model components, an implementation of core operations to exploit hardware accelerator characteristics, and application-specific input representations that exploit the properties of our model. Experiments show our larger spherical CNNs reach state-of-the-art on several targets of the QM9 molecular benchmark, which was previously dominated by equivariant graph neural networks, and achieve competitive performance on multiple weather forecasting tasks. Our code is available at https://github.com/google-research/spherical-cnn.
Sparsely Aggregated Convolutional Networks
We explore a key architectural aspect of deep convolutional neural networks: the pattern of internal skip connections used to aggregate outputs of earlier layers for consumption by deeper layers. Such aggregation is critical to facilitate training of very deep networks in an end-to-end manner. This is a primary reason for the widespread adoption of residual networks, which aggregate outputs via cumulative summation. While subsequent works investigate alternative aggregation operations (e.g. concatenation), we focus on an orthogonal question: which outputs to aggregate at a particular point in the network. We propose a new internal connection structure which aggregates only a sparse set of previous outputs at any given depth. Our experiments demonstrate this simple design change offers superior performance with fewer parameters and lower computational requirements. Moreover, we show that sparse aggregation allows networks to scale more robustly to 1000+ layers, thereby opening future avenues for training long-running visual processes.
Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions
Recent advances in attention-free sequence models rely on convolutions as alternatives to the attention operator at the core of Transformers. In particular, long convolution sequence models have achieved state-of-the-art performance in many domains, but incur a significant cost during auto-regressive inference workloads -- naively requiring a full pass (or caching of activations) over the input sequence for each generated token -- similarly to attention-based models. In this paper, we seek to enable mathcal O(1) compute and memory cost per token in any pre-trained long convolution architecture to reduce memory footprint and increase throughput during generation. Concretely, our methods consist in extracting low-dimensional linear state-space models from each convolution layer, building upon rational interpolation and model-order reduction techniques. We further introduce architectural improvements to convolution-based layers such as Hyena: by weight-tying the filters across channels into heads, we achieve higher pre-training quality and reduce the number of filters to be distilled. The resulting model achieves 10x higher throughput than Transformers and 1.5x higher than Hyena at 1.3B parameters, without any loss in quality after distillation.
Patches Are All You Need?
Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together small regions of the image into single input features, in order to be applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast, however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet. Our code is available at https://github.com/locuslab/convmixer.
Can Vision Transformers Perform Convolution?
Several recent studies have demonstrated that attention-based networks, such as Vision Transformer (ViT), can outperform Convolutional Neural Networks (CNNs) on several computer vision tasks without using convolutional layers. This naturally leads to the following questions: Can a self-attention layer of ViT express any convolution operation? In this work, we prove that a single ViT layer with image patches as the input can perform any convolution operation constructively, where the multi-head attention mechanism and the relative positional encoding play essential roles. We further provide a lower bound on the number of heads for Vision Transformers to express CNNs. Corresponding with our analysis, experimental results show that the construction in our proof can help inject convolutional bias into Transformers and significantly improve the performance of ViT in low data regimes.
DeepliteRT: Computer Vision at the Edge
The proliferation of edge devices has unlocked unprecedented opportunities for deep learning model deployment in computer vision applications. However, these complex models require considerable power, memory and compute resources that are typically not available on edge platforms. Ultra low-bit quantization presents an attractive solution to this problem by scaling down the model weights and activations from 32-bit to less than 8-bit. We implement highly optimized ultra low-bit convolution operators for ARM-based targets that outperform existing methods by up to 4.34x. Our operator is implemented within Deeplite Runtime (DeepliteRT), an end-to-end solution for the compilation, tuning, and inference of ultra low-bit models on ARM devices. Compiler passes in DeepliteRT automatically convert a fake-quantized model in full precision to a compact ultra low-bit representation, easing the process of quantized model deployment on commodity hardware. We analyze the performance of DeepliteRT on classification and detection models against optimized 32-bit floating-point, 8-bit integer, and 2-bit baselines, achieving significant speedups of up to 2.20x, 2.33x and 2.17x, respectively.
Efficient Deformable ConvNets: Rethinking Dynamic and Sparse Operator for Vision Applications
We introduce Deformable Convolution v4 (DCNv4), a highly efficient and effective operator designed for a broad spectrum of vision applications. DCNv4 addresses the limitations of its predecessor, DCNv3, with two key enhancements: 1. removing softmax normalization in spatial aggregation to enhance its dynamic property and expressive power and 2. optimizing memory access to minimize redundant operations for speedup. These improvements result in a significantly faster convergence compared to DCNv3 and a substantial increase in processing speed, with DCNv4 achieving more than three times the forward speed. DCNv4 demonstrates exceptional performance across various tasks, including image classification, instance and semantic segmentation, and notably, image generation. When integrated into generative models like U-Net in the latent diffusion model, DCNv4 outperforms its baseline, underscoring its possibility to enhance generative models. In practical applications, replacing DCNv3 with DCNv4 in the InternImage model to create FlashInternImage results in up to 80% speed increase and further performance improvement without further modifications. The advancements in speed and efficiency of DCNv4, combined with its robust performance across diverse vision tasks, show its potential as a foundational building block for future vision models.
NeuRI: Diversifying DNN Generation via Inductive Rule Inference
Deep Learning (DL) is prevalently used in various industries to improve decision-making and automate processes, driven by the ever-evolving DL libraries and compilers. The correctness of DL systems is crucial for trust in DL applications. As such, the recent wave of research has been studying the automated synthesis of test-cases (i.e., DNN models and their inputs) for fuzzing DL systems. However, existing model generators only subsume a limited number of operators, lacking the ability to pervasively model operator constraints. To address this challenge, we propose NeuRI, a fully automated approach for generating valid and diverse DL models composed of hundreds of types of operators. NeuRI adopts a three-step process: (i) collecting valid and invalid API traces from various sources; (ii) applying inductive program synthesis over the traces to infer the constraints for constructing valid models; and (iii) using hybrid model generation which incorporates both symbolic and concrete operators. Our evaluation shows that NeuRI improves branch coverage of TensorFlow and PyTorch by 24% and 15% over the state-of-the-art model-level fuzzers. NeuRI finds 100 new bugs for PyTorch and TensorFlow in four months, with 81 already fixed or confirmed. Of these, 9 bugs are labelled as high priority or security vulnerability, constituting 10% of all high-priority bugs of the period. Open-source developers regard error-inducing tests reported by us as "high-quality" and "common in practice".
OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions
The pretrain-finetune paradigm in modern computer vision facilitates the success of self-supervised learning, which tends to achieve better transferability than supervised learning. However, with the availability of massive labeled data, a natural question emerges: how to train a better model with both self and full supervision signals? In this paper, we propose Omni-suPErvised Representation leArning with hierarchical supervisions (OPERA) as a solution. We provide a unified perspective of supervisions from labeled and unlabeled data and propose a unified framework of fully supervised and self-supervised learning. We extract a set of hierarchical proxy representations for each image and impose self and full supervisions on the corresponding proxy representations. Extensive experiments on both convolutional neural networks and vision transformers demonstrate the superiority of OPERA in image classification, segmentation, and object detection. Code is available at: https://github.com/wangck20/OPERA.
Spatial Transformer Networks
Convolutional Neural Networks define an exceptionally powerful class of models, but are still limited by the lack of ability to be spatially invariant to the input data in a computationally and parameter efficient manner. In this work we introduce a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network. This differentiable module can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimisation process. We show that the use of spatial transformers results in models which learn invariance to translation, scale, rotation and more generic warping, resulting in state-of-the-art performance on several benchmarks, and for a number of classes of transformations.
DC is all you need: describing ReLU from a signal processing standpoint
Non-linear activation functions are crucial in Convolutional Neural Networks. However, until now they have not been well described in the frequency domain. In this work, we study the spectral behavior of ReLU, a popular activation function. We use the ReLU's Taylor expansion to derive its frequency domain behavior. We demonstrate that ReLU introduces higher frequency oscillations in the signal and a constant DC component. Furthermore, we investigate the importance of this DC component, where we demonstrate that it helps the model extract meaningful features related to the input frequency content. We accompany our theoretical derivations with experiments and real-world examples. First, we numerically validate our frequency response model. Then we observe ReLU's spectral behavior on two example models and a real-world one. Finally, we experimentally investigate the role of the DC component introduced by ReLU in the CNN's representations. Our results indicate that the DC helps to converge to a weight configuration that is close to the initial random weights.
FInC Flow: Fast and Invertible k times k Convolutions for Normalizing Flows
Invertible convolutions have been an essential element for building expressive normalizing flow-based generative models since their introduction in Glow. Several attempts have been made to design invertible k times k convolutions that are efficient in training and sampling passes. Though these attempts have improved the expressivity and sampling efficiency, they severely lagged behind Glow which used only 1 times 1 convolutions in terms of sampling time. Also, many of the approaches mask a large number of parameters of the underlying convolution, resulting in lower expressivity on a fixed run-time budget. We propose a k times k convolutional layer and Deep Normalizing Flow architecture which i.) has a fast parallel inversion algorithm with running time O(n k^2) (n is height and width of the input image and k is kernel size), ii.) masks the minimal amount of learnable parameters in a layer. iii.) gives better forward pass and sampling times comparable to other k times k convolution-based models on real-world benchmarks. We provide an implementation of the proposed parallel algorithm for sampling using our invertible convolutions on GPUs. Benchmarks on CIFAR-10, ImageNet, and CelebA datasets show comparable performance to previous works regarding bits per dimension while significantly improving the sampling time.
Variational Autoencoding Neural Operators
Unsupervised learning with functional data is an emerging paradigm of machine learning research with applications to computer vision, climate modeling and physical systems. A natural way of modeling functional data is by learning operators between infinite dimensional spaces, leading to discretization invariant representations that scale independently of the sample grid resolution. Here we present Variational Autoencoding Neural Operators (VANO), a general strategy for making a large class of operator learning architectures act as variational autoencoders. For this purpose, we provide a novel rigorous mathematical formulation of the variational objective in function spaces for training. VANO first maps an input function to a distribution over a latent space using a parametric encoder and then decodes a sample from the latent distribution to reconstruct the input, as in classic variational autoencoders. We test VANO with different model set-ups and architecture choices for a variety of benchmarks. We start from a simple Gaussian random field where we can analytically track what the model learns and progressively transition to more challenging benchmarks including modeling phase separation in Cahn-Hilliard systems and real world satellite data for measuring Earth surface deformation.
UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition
Large-kernel convolutional neural networks (ConvNets) have recently received extensive research attention, but there are two unresolved and critical issues that demand further investigation. 1) The architectures of existing large-kernel ConvNets largely follow the design principles of conventional ConvNets or transformers, while the architectural design for large-kernel ConvNets remains under-addressed. 2) As transformers have dominated multiple modalities, it remains to be investigated whether ConvNets also have a strong universal perception ability in domains beyond vision. In this paper, we contribute from two aspects. 1) We propose four architectural guidelines for designing large-kernel ConvNets, the core of which is to exploit the essential characteristics of large kernels that distinguish them from small kernels - they can see wide without going deep. Following such guidelines, our proposed large-kernel ConvNet shows leading performance in image recognition. For example, our models achieve an ImageNet accuracy of 88.0%, ADE20K mIoU of 55.6%, and COCO box AP of 56.4%, demonstrating better performance and higher speed than a number of recently proposed powerful competitors. 2) We discover that large kernels are the key to unlocking the exceptional performance of ConvNets in domains where they were originally not proficient. With certain modality-related preprocessing approaches, the proposed model achieves state-of-the-art performance on time-series forecasting and audio recognition tasks even without modality-specific customization to the architecture. Code and all the models at https://github.com/AILab-CVC/UniRepLKNet.
Do Vision Transformers See Like Convolutional Neural Networks?
Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers. We study the ramifications for spatial localization, demonstrating ViTs successfully preserve input spatial information, with noticeable effects from different classification methods. Finally, we study the effect of (pretraining) dataset scale on intermediate features and transfer learning, and conclude with a discussion on connections to new architectures such as the MLP-Mixer.
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Currently, many theoretical as well as practically relevant questions towards the transferability and robustness of Convolutional Neural Networks (CNNs) remain unsolved. While ongoing research efforts are engaging these problems from various angles, in most computer vision related cases these approaches can be generalized to investigations of the effects of distribution shifts in image data. In this context, we propose to study the shifts in the learned weights of trained CNN models. Here we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a dataset with over 1.4 billion filters from hundreds of trained CNNs, using a wide range of datasets, architectures, and vision tasks. In a first use case of the proposed dataset, we can show highly relevant properties of many publicly available pre-trained models for practical applications: I) We analyze distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like visual category of the dataset, task, architecture, or layer depth. Based on these results, we conclude that model pre-training can succeed on arbitrary datasets if they meet size and variance conditions. II) We show that many pre-trained models contain degenerated filters which make them less robust and less suitable for fine-tuning on target applications. Data & Project website: https://github.com/paulgavrikov/cnn-filter-db
Learning Features with Parameter-Free Layers
Trainable layers such as convolutional building blocks are the standard network design choices by learning parameters to capture the global context through successive spatial operations. When designing an efficient network, trainable layers such as the depthwise convolution is the source of efficiency in the number of parameters and FLOPs, but there was little improvement to the model speed in practice. This paper argues that simple built-in parameter-free operations can be a favorable alternative to the efficient trainable layers replacing spatial operations in a network architecture. We aim to break the stereotype of organizing the spatial operations of building blocks into trainable layers. Extensive experimental analyses based on layer-level studies with fully-trained models and neural architecture searches are provided to investigate whether parameter-free operations such as the max-pool are functional. The studies eventually give us a simple yet effective idea for redesigning network architectures, where the parameter-free operations are heavily used as the main building block without sacrificing the model accuracy as much. Experimental results on the ImageNet dataset demonstrate that the network architectures with parameter-free operations could enjoy the advantages of further efficiency in terms of model speed, the number of the parameters, and FLOPs. Code and ImageNet pretrained models are available at https://github.com/naver-ai/PfLayer.
Polynomial Implicit Neural Representations For Large Diverse Datasets
Implicit neural representations (INR) have gained significant popularity for signal and image representation for many end-tasks, such as superresolution, 3D modeling, and more. Most INR architectures rely on sinusoidal positional encoding, which accounts for high-frequency information in data. However, the finite encoding size restricts the model's representational power. Higher representational power is needed to go from representing a single given image to representing large and diverse datasets. Our approach addresses this gap by representing an image with a polynomial function and eliminates the need for positional encodings. Therefore, to achieve a progressively higher degree of polynomial representation, we use element-wise multiplications between features and affine-transformed coordinate locations after every ReLU layer. The proposed method is evaluated qualitatively and quantitatively on large datasets like ImageNet. The proposed Poly-INR model performs comparably to state-of-the-art generative models without any convolution, normalization, or self-attention layers, and with far fewer trainable parameters. With much fewer training parameters and higher representative power, our approach paves the way for broader adoption of INR models for generative modeling tasks in complex domains. The code is available at https://github.com/Rajhans0/Poly_INR
Very Deep Convolutional Networks for Large-Scale Image Recognition
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Solving parametric partial differential equations (PDEs) and associated PDE-based, inverse problems is a central task in engineering and physics, yet existing neural operator methods struggle with high-dimensional, discontinuous inputs and require large amounts of {\em labeled} training data. We propose the Deep Generative Neural Operator (DGNO), a physics-aware framework that addresses these challenges by leveraging a deep, generative, probabilistic model in combination with a set of lower-dimensional, latent variables that simultaneously encode PDE-inputs and PDE-outputs. This formulation can make use of unlabeled data and significantly improves inverse problem-solving, particularly for discontinuous or discrete-valued input functions. DGNO enforces physics constraints without labeled data by incorporating as virtual observables, weak-form residuals based on compactly supported radial basis functions (CSRBFs). These relax regularity constraints and eliminate higher-order derivatives from the objective function. We also introduce MultiONet, a novel neural operator architecture, which is a more expressive generalization of the popular DeepONet that significantly enhances the approximating power of the proposed model. These innovations make DGNO particularly effective for challenging forward and inverse, PDE-based problems, such as those involving multi-phase media. Numerical experiments demonstrate that DGNO achieves higher accuracy across multiple benchmarks while exhibiting robustness to noise and strong generalization to out-of-distribution cases. Its adaptability, and the ability to handle sparse, noisy data while providing probabilistic estimates, make DGNO a powerful tool for scientific and engineering applications.
When is a Convolutional Filter Easy To Learn?
We analyze the convergence of (stochastic) gradient descent algorithm for learning a convolutional filter with Rectified Linear Unit (ReLU) activation function. Our analysis does not rely on any specific form of the input distribution and our proofs only use the definition of ReLU, in contrast with previous works that are restricted to standard Gaussian input. We show that (stochastic) gradient descent with random initialization can learn the convolutional filter in polynomial time and the convergence rate depends on the smoothness of the input distribution and the closeness of patches. To the best of our knowledge, this is the first recovery guarantee of gradient-based algorithms for convolutional filter on non-Gaussian input distributions. Our theory also justifies the two-stage learning rate strategy in deep neural networks. While our focus is theoretical, we also present experiments that illustrate our theoretical findings.
White-Box Transformers via Sparse Rate Reduction
In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at https://github.com/Ma-Lab-Berkeley/CRATE.
Neural Networks as Explicit Word-Based Rules
Filters of convolutional networks used in computer vision are often visualized as image patches that maximize the response of the filter. We use the same approach to interpret weight matrices in simple architectures for natural language processing tasks. We interpret a convolutional network for sentiment classification as word-based rules. Using the rule, we recover the performance of the original model.
What Do Single-view 3D Reconstruction Networks Learn?
Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivial reasoning about the 3D structure of the output space. In this work, we set up two alternative approaches that perform image classification and retrieval respectively. These simple baselines yield better results than state-of-the-art methods, both qualitatively and quantitatively. We show that encoder-decoder methods are statistically indistinguishable from these baselines, thus indicating that the current state of the art in single-view object reconstruction does not actually perform reconstruction but image classification. We identify aspects of popular experimental procedures that elicit this behavior and discuss ways to improve the current state of research.
Recent Advances in Zero-shot Recognition
With the recent renaissance of deep convolution neural networks, encouraging breakthroughs have been achieved on the supervised recognition tasks, where each class has sufficient training data and fully annotated training data. However, to scale the recognition to a large number of classes with few or now training samples for each class remains an unsolved problem. One approach to scaling up the recognition is to develop models capable of recognizing unseen categories without any training instances, or zero-shot recognition/ learning. This article provides a comprehensive review of existing zero-shot recognition techniques covering various aspects ranging from representations of models, and from datasets and evaluation settings. We also overview related recognition tasks including one-shot and open set recognition which can be used as natural extensions of zero-shot recognition when limited number of class samples become available or when zero-shot recognition is implemented in a real-world setting. Importantly, we highlight the limitations of existing approaches and point out future research directions in this existing new research area.
Revisiting Self-Supervised Visual Representation Learning
Unsupervised visual representation learning remains a largely unsolved problem in computer vision research. Among a big body of recently proposed approaches for unsupervised learning of visual representations, a class of self-supervised techniques achieves superior performance on many challenging benchmarks. A large number of the pretext tasks for self-supervised learning have been studied, but other important aspects, such as the choice of convolutional neural networks (CNN), has not received equal attention. Therefore, we revisit numerous previously proposed self-supervised models, conduct a thorough large scale study and, as a result, uncover multiple crucial insights. We challenge a number of common practices in selfsupervised visual representation learning and observe that standard recipes for CNN design do not always translate to self-supervised representation learning. As part of our study, we drastically boost the performance of previously proposed techniques and outperform previously published state-of-the-art results by a large margin.
SENetV2: Aggregated dense layer for channelwise and global representations
Convolutional Neural Networks (CNNs) have revolutionized image classification by extracting spatial features and enabling state-of-the-art accuracy in vision-based tasks. The squeeze and excitation network proposed module gathers channelwise representations of the input. Multilayer perceptrons (MLP) learn global representation from the data and in most image classification models used to learn extracted features of the image. In this paper, we introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze excitation residual module designed to surpass the performance of existing architectures. Our approach leverages a combination of squeeze excitation network module with dense layers. This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge, leading to a better feature representation. This proposed model has a negligible increase in parameters when compared to SENet. We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures. Experimental results demonstrate a remarkable increase in the classification accuracy of the proposed model.
Minimizing FLOPs to Learn Efficient Sparse Representations
Deep representation learning has become one of the most widely adopted approaches for visual search, recommendation, and identification. Retrieval of such representations from a large database is however computationally challenging. Approximate methods based on learning compact representations, have been widely explored for this problem, such as locality sensitive hashing, product quantization, and PCA. In this work, in contrast to learning compact representations, we propose to learn high dimensional and sparse representations that have similar representational capacity as dense embeddings while being more efficient due to sparse matrix multiplication operations which can be much faster than dense multiplication. Following the key insight that the number of operations decreases quadratically with the sparsity of embeddings provided the non-zero entries are distributed uniformly across dimensions, we propose a novel approach to learn such distributed sparse embeddings via the use of a carefully constructed regularization function that directly minimizes a continuous relaxation of the number of floating-point operations (FLOPs) incurred during retrieval. Our experiments show that our approach is competitive to the other baselines and yields a similar or better speed-vs-accuracy tradeoff on practical datasets.
Towards Stability of Autoregressive Neural Operators
Neural operators have proven to be a promising approach for modeling spatiotemporal systems in the physical sciences. However, training these models for large systems can be quite challenging as they incur significant computational and memory expense -- these systems are often forced to rely on autoregressive time-stepping of the neural network to predict future temporal states. While this is effective in managing costs, it can lead to uncontrolled error growth over time and eventual instability. We analyze the sources of this autoregressive error growth using prototypical neural operator models for physical systems and explore ways to mitigate it. We introduce architectural and application-specific improvements that allow for careful control of instability-inducing operations within these models without inflating the compute/memory expense. We present results on several scientific systems that include Navier-Stokes fluid flow, rotating shallow water, and a high-resolution global weather forecasting system. We demonstrate that applying our design principles to neural operators leads to significantly lower errors for long-term forecasts as well as longer time horizons without qualitative signs of divergence compared to the original models for these systems. We open-source our https://github.com/mikemccabe210/stabilizing_neural_operators{code} for reproducibility.
Inverting Visual Representations with Convolutional Networks
Feature representations, both hand-designed and learned ones, are often hard to analyze and interpret, even when they are extracted from visual data. We propose a new approach to study image representations by inverting them with an up-convolutional neural network. We apply the method to shallow representations (HOG, SIFT, LBP), as well as to deep networks. For shallow representations our approach provides significantly better reconstructions than existing methods, revealing that there is surprisingly rich information contained in these features. Inverting a deep network trained on ImageNet provides several insights into the properties of the feature representation learned by the network. Most strikingly, the colors and the rough contours of an image can be reconstructed from activations in higher network layers and even from the predicted class probabilities.
A guide to convolution arithmetic for deep learning
We introduce a guide to help deep learning practitioners understand and manipulate convolutional neural network architectures. The guide clarifies the relationship between various properties (input shape, kernel shape, zero padding, strides and output shape) of convolutional, pooling and transposed convolutional layers, as well as the relationship between convolutional and transposed convolutional layers. Relationships are derived for various cases, and are illustrated in order to make them intuitive.
Convolutional Networks on Graphs for Learning Molecular Fingerprints
We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.
Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning
Self-supervised learning of convolutional neural networks can harness large amounts of cheap unlabeled data to train powerful feature representations. As surrogate task, we jointly address ordering of visual data in the spatial and temporal domain. The permutations of training samples, which are at the core of self-supervision by ordering, have so far been sampled randomly from a fixed preselected set. Based on deep reinforcement learning we propose a sampling policy that adapts to the state of the network, which is being trained. Therefore, new permutations are sampled according to their expected utility for updating the convolutional feature representation. Experimental evaluation on unsupervised and transfer learning tasks demonstrates competitive performance on standard benchmarks for image and video classification and nearest neighbor retrieval.
Dilated convolution with learnable spacings
Recent works indicate that convolutional neural networks (CNN) need large receptive fields (RF) to compete with visual transformers and their attention mechanism. In CNNs, RFs can simply be enlarged by increasing the convolution kernel sizes. Yet the number of trainable parameters, which scales quadratically with the kernel's size in the 2D case, rapidly becomes prohibitive, and the training is notoriously difficult. This paper presents a new method to increase the RF size without increasing the number of parameters. The dilated convolution (DC) has already been proposed for the same purpose. DC can be seen as a convolution with a kernel that contains only a few non-zero elements placed on a regular grid. Here we present a new version of the DC in which the spacings between the non-zero elements, or equivalently their positions, are no longer fixed but learnable via backpropagation thanks to an interpolation technique. We call this method "Dilated Convolution with Learnable Spacings" (DCLS) and generalize it to the n-dimensional convolution case. However, our main focus here will be on the 2D case. We first tried our approach on ResNet50: we drop-in replaced the standard convolutions with DCLS ones, which increased the accuracy of ImageNet1k classification at iso-parameters, but at the expense of the throughput. Next, we used the recent ConvNeXt state-of-the-art convolutional architecture and drop-in replaced the depthwise convolutions with DCLS ones. This not only increased the accuracy of ImageNet1k classification but also of typical downstream and robustness tasks, again at iso-parameters but this time with negligible cost on throughput, as ConvNeXt uses separable convolutions. Conversely, classic DC led to poor performance with both ResNet50 and ConvNeXt. The code of the method is available at: https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch.
LSNet: See Large, Focus Small
Vision network designs, including Convolutional Neural Networks and Vision Transformers, have significantly advanced the field of computer vision. Yet, their complex computations pose challenges for practical deployments, particularly in real-time applications. To tackle this issue, researchers have explored various lightweight and efficient network designs. However, existing lightweight models predominantly leverage self-attention mechanisms and convolutions for token mixing. This dependence brings limitations in effectiveness and efficiency in the perception and aggregation processes of lightweight networks, hindering the balance between performance and efficiency under limited computational budgets. In this paper, we draw inspiration from the dynamic heteroscale vision ability inherent in the efficient human vision system and propose a ``See Large, Focus Small'' strategy for lightweight vision network design. We introduce LS (Large-Small) convolution, which combines large-kernel perception and small-kernel aggregation. It can efficiently capture a wide range of perceptual information and achieve precise feature aggregation for dynamic and complex visual representations, thus enabling proficient processing of visual information. Based on LS convolution, we present LSNet, a new family of lightweight models. Extensive experiments demonstrate that LSNet achieves superior performance and efficiency over existing lightweight networks in various vision tasks. Codes and models are available at https://github.com/jameslahm/lsnet.
ConvMath: A Convolutional Sequence Network for Mathematical Expression Recognition
Despite the recent advances in optical character recognition (OCR), mathematical expressions still face a great challenge to recognize due to their two-dimensional graphical layout. In this paper, we propose a convolutional sequence modeling network, ConvMath, which converts the mathematical expression description in an image into a LaTeX sequence in an end-to-end way. The network combines an image encoder for feature extraction and a convolutional decoder for sequence generation. Compared with other Long Short Term Memory(LSTM) based encoder-decoder models, ConvMath is entirely based on convolution, thus it is easy to perform parallel computation. Besides, the network adopts multi-layer attention mechanism in the decoder, which allows the model to align output symbols with source feature vectors automatically, and alleviates the problem of lacking coverage while training the model. The performance of ConvMath is evaluated on an open dataset named IM2LATEX-100K, including 103556 samples. The experimental results demonstrate that the proposed network achieves state-of-the-art accuracy and much better efficiency than previous methods.
Gaussian Mixture Convolution Networks
This paper proposes a novel method for deep learning based on the analytical convolution of multidimensional Gaussian mixtures. In contrast to tensors, these do not suffer from the curse of dimensionality and allow for a compact representation, as data is only stored where details exist. Convolution kernels and data are Gaussian mixtures with unconstrained weights, positions, and covariance matrices. Similar to discrete convolutional networks, each convolution step produces several feature channels, represented by independent Gaussian mixtures. Since traditional transfer functions like ReLUs do not produce Gaussian mixtures, we propose using a fitting of these functions instead. This fitting step also acts as a pooling layer if the number of Gaussian components is reduced appropriately. We demonstrate that networks based on this architecture reach competitive accuracy on Gaussian mixtures fitted to the MNIST and ModelNet data sets.
Fourier Neural Operator for Parametric Partial Differential Equations
The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model turbulent flows with zero-shot super-resolution. It is up to three orders of magnitude faster compared to traditional PDE solvers. Additionally, it achieves superior accuracy compared to previous learning-based solvers under fixed resolution.
