new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Efficient Track Anything

Segment Anything Model 2 (SAM 2) has emerged as a powerful tool for video object segmentation and tracking anything. Key components of SAM 2 that drive the impressive video object segmentation performance include a large multistage image encoder for frame feature extraction and a memory mechanism that stores memory contexts from past frames to help current frame segmentation. The high computation complexity of multistage image encoder and memory module has limited its applications in real-world tasks, e.g., video object segmentation on mobile devices. To address this limitation, we propose EfficientTAMs, lightweight track anything models that produce high-quality results with low latency and model size. Our idea is based on revisiting the plain, nonhierarchical Vision Transformer (ViT) as an image encoder for video object segmentation, and introducing an efficient memory module, which reduces the complexity for both frame feature extraction and memory computation for current frame segmentation. We take vanilla lightweight ViTs and efficient memory module to build EfficientTAMs, and train the models on SA-1B and SA-V datasets for video object segmentation and track anything tasks. We evaluate on multiple video segmentation benchmarks including semi-supervised VOS and promptable video segmentation, and find that our proposed EfficientTAM with vanilla ViT perform comparably to SAM 2 model (HieraB+SAM 2) with ~2x speedup on A100 and ~2.4x parameter reduction. On segment anything image tasks, our EfficientTAMs also perform favorably over original SAM with ~20x speedup on A100 and ~20x parameter reduction. On mobile devices such as iPhone 15 Pro Max, our EfficientTAMs can run at ~10 FPS for performing video object segmentation with reasonable quality, highlighting the capability of small models for on-device video object segmentation applications.

  • 13 authors
·
Nov 28, 2024 3

Menta: A Small Language Model for On-Device Mental Health Prediction

Mental health conditions affect hundreds of millions globally, yet early detection remains limited. While large language models (LLMs) have shown promise in mental health applications, their size and computational demands hinder practical deployment. Small language models (SLMs) offer a lightweight alternative, but their use for social media--based mental health prediction remains largely underexplored. In this study, we introduce Menta, the first optimized SLM fine-tuned specifically for multi-task mental health prediction from social media data. Menta is jointly trained across six classification tasks using a LoRA-based framework, a cross-dataset strategy, and a balanced accuracy--oriented loss. Evaluated against nine state-of-the-art SLM baselines, Menta achieves an average improvement of 15.2\% across tasks covering depression, stress, and suicidality compared with the best-performing non--fine-tuned SLMs. It also achieves higher accuracy on depression and stress classification tasks compared to 13B-parameter LLMs, while being approximately 3.25x smaller. Moreover, we demonstrate real-time, on-device deployment of Menta on an iPhone 15 Pro Max, requiring only approximately 3GB RAM. Supported by a comprehensive benchmark against existing SLMs and LLMs, Menta highlights the potential for scalable, privacy-preserving mental health monitoring. Code is available at: https://xxue752-nz.github.io/menta-project/

  • 9 authors
·
Dec 2