Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFoley Control: Aligning a Frozen Latent Text-to-Audio Model to Video
Foley Control is a lightweight approach to video-guided Foley that keeps pretrained single-modality models frozen and learns only a small cross-attention bridge between them. We connect V-JEPA2 video embeddings to a frozen Stable Audio Open DiT text-to-audio (T2A) model by inserting compact video cross-attention after the model's existing text cross-attention, so prompts set global semantics while video refines timing and local dynamics. The frozen backbones retain strong marginals (video; audio given text) and the bridge learns the audio-video dependency needed for synchronization -- without retraining the audio prior. To cut memory and stabilize training, we pool video tokens before conditioning. On curated video-audio benchmarks, Foley Control delivers competitive temporal and semantic alignment with far fewer trainable parameters than recent multi-modal systems, while preserving prompt-driven controllability and production-friendly modularity (swap/upgrade encoders or the T2A backbone without end-to-end retraining). Although we focus on Video-to-Foley, the same bridge design can potentially extend to other audio modalities (e.g., speech).
ControlStyle: Text-Driven Stylized Image Generation Using Diffusion Priors
Recently, the multimedia community has witnessed the rise of diffusion models trained on large-scale multi-modal data for visual content creation, particularly in the field of text-to-image generation. In this paper, we propose a new task for ``stylizing'' text-to-image models, namely text-driven stylized image generation, that further enhances editability in content creation. Given input text prompt and style image, this task aims to produce stylized images which are both semantically relevant to input text prompt and meanwhile aligned with the style image in style. To achieve this, we present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network enabling more conditions of text prompts and style images. Moreover, diffusion style and content regularizations are simultaneously introduced to facilitate the learning of this modulation network with these diffusion priors, pursuing high-quality stylized text-to-image generation. Extensive experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results, surpassing a simple combination of text-to-image model and conventional style transfer techniques.
Prompt-to-Prompt Image Editing with Cross Attention Control
Recent large-scale text-driven synthesis models have attracted much attention thanks to their remarkable capabilities of generating highly diverse images that follow given text prompts. Such text-based synthesis methods are particularly appealing to humans who are used to verbally describe their intent. Therefore, it is only natural to extend the text-driven image synthesis to text-driven image editing. Editing is challenging for these generative models, since an innate property of an editing technique is to preserve most of the original image, while in the text-based models, even a small modification of the text prompt often leads to a completely different outcome. State-of-the-art methods mitigate this by requiring the users to provide a spatial mask to localize the edit, hence, ignoring the original structure and content within the masked region. In this paper, we pursue an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only. To this end, we analyze a text-conditioned model in depth and observe that the cross-attention layers are the key to controlling the relation between the spatial layout of the image to each word in the prompt. With this observation, we present several applications which monitor the image synthesis by editing the textual prompt only. This includes localized editing by replacing a word, global editing by adding a specification, and even delicately controlling the extent to which a word is reflected in the image. We present our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.
Multi-Track Timeline Control for Text-Driven 3D Human Motion Generation
Recent advances in generative modeling have led to promising progress on synthesizing 3D human motion from text, with methods that can generate character animations from short prompts and specified durations. However, using a single text prompt as input lacks the fine-grained control needed by animators, such as composing multiple actions and defining precise durations for parts of the motion. To address this, we introduce the new problem of timeline control for text-driven motion synthesis, which provides an intuitive, yet fine-grained, input interface for users. Instead of a single prompt, users can specify a multi-track timeline of multiple prompts organized in temporal intervals that may overlap. This enables specifying the exact timings of each action and composing multiple actions in sequence or at overlapping intervals. To generate composite animations from a multi-track timeline, we propose a new test-time denoising method. This method can be integrated with any pre-trained motion diffusion model to synthesize realistic motions that accurately reflect the timeline. At every step of denoising, our method processes each timeline interval (text prompt) individually, subsequently aggregating the predictions with consideration for the specific body parts engaged in each action. Experimental comparisons and ablations validate that our method produces realistic motions that respect the semantics and timing of given text prompts. Our code and models are publicly available at https://mathis.petrovich.fr/stmc.
CannyEdit: Selective Canny Control and Dual-Prompt Guidance for Training-Free Image Editing
Recent advances in text-to-image (T2I) models have enabled training-free regional image editing by leveraging the generative priors of foundation models. However, existing methods struggle to balance text adherence in edited regions, context fidelity in unedited areas, and seamless integration of edits. We introduce CannyEdit, a novel training-free framework that addresses these challenges through two key innovations: (1) Selective Canny Control, which masks the structural guidance of Canny ControlNet in user-specified editable regions while strictly preserving details of the source images in unedited areas via inversion-phase ControlNet information retention. This enables precise, text-driven edits without compromising contextual integrity. (2) Dual-Prompt Guidance, which combines local prompts for object-specific edits with a global target prompt to maintain coherent scene interactions. On real-world image editing tasks (addition, replacement, removal), CannyEdit outperforms prior methods like KV-Edit, achieving a 2.93 to 10.49 percent improvement in the balance of text adherence and context fidelity. In terms of editing seamlessness, user studies reveal only 49.2 percent of general users and 42.0 percent of AIGC experts identified CannyEdit's results as AI-edited when paired with real images without edits, versus 76.08 to 89.09 percent for competitor methods.
GCDance: Genre-Controlled 3D Full Body Dance Generation Driven By Music
Generating high-quality full-body dance sequences from music is a challenging task as it requires strict adherence to genre-specific choreography. Moreover, the generated sequences must be both physically realistic and precisely synchronized with the beats and rhythm of the music. To overcome these challenges, we propose GCDance, a classifier-free diffusion framework for generating genre-specific dance motions conditioned on both music and textual prompts. Specifically, our approach extracts music features by combining high-level pre-trained music foundation model features with hand-crafted features for multi-granularity feature fusion. To achieve genre controllability, we leverage CLIP to efficiently embed genre-based textual prompt representations at each time step within our dance generation pipeline. Our GCDance framework can generate diverse dance styles from the same piece of music while ensuring coherence with the rhythm and melody of the music. Extensive experimental results obtained on the FineDance dataset demonstrate that GCDance significantly outperforms the existing state-of-the-art approaches, which also achieve competitive results on the AIST++ dataset. Our ablation and inference time analysis demonstrate that GCDance provides an effective solution for high-quality music-driven dance generation.
Cut-and-Paste: Subject-Driven Video Editing with Attention Control
This paper presents a novel framework termed Cut-and-Paste for real-word semantic video editing under the guidance of text prompt and additional reference image. While the text-driven video editing has demonstrated remarkable ability to generate highly diverse videos following given text prompts, the fine-grained semantic edits are hard to control by plain textual prompt only in terms of object details and edited region, and cumbersome long text descriptions are usually needed for the task. We therefore investigate subject-driven video editing for more precise control of both edited regions and background preservation, and fine-grained semantic generation. We achieve this goal by introducing an reference image as supplementary input to the text-driven video editing, which avoids racking your brain to come up with a cumbersome text prompt describing the detailed appearance of the object. To limit the editing area, we refer to a method of cross attention control in image editing and successfully extend it to video editing by fusing the attention map of adjacent frames, which strikes a balance between maintaining video background and spatio-temporal consistency. Compared with current methods, the whole process of our method is like ``cut" the source object to be edited and then ``paste" the target object provided by reference image. We demonstrate that our method performs favorably over prior arts for video editing under the guidance of text prompt and extra reference image, as measured by both quantitative and subjective evaluations.
The Silent Prompt: Initial Noise as Implicit Guidance for Goal-Driven Image Generation
Text-to-image synthesis (T2I) has advanced remarkably with the emergence of large-scale diffusion models. In the conventional setup, the text prompt provides explicit, user-defined guidance, directing the generation process by denoising a randomly sampled Gaussian noise. In this work, we reveal that the often-overlooked noise itself encodes inherent generative tendencies, acting as a "silent prompt" that implicitly guides the output. This implicit guidance, embedded in the noise scheduler design of diffusion model formulations and their training stages, generalizes across a wide range of T2I models and backbones. Building on this insight, we introduce NoiseQuery, a novel strategy that selects optimal initial noise from a pre-built noise library to meet diverse user needs. Our approach not only enhances high-level semantic alignment with text prompts, but also allows for nuanced adjustments of low-level visual attributes, such as texture, sharpness, shape, and color, which are typically challenging to control through text alone. Extensive experiments across various models and target attributes demonstrate the strong performance and zero-shot transferability of our approach, requiring no additional optimization.
Rethinking Autonomy: Preventing Failures in AI-Driven Software Engineering
The integration of Large Language Models (LLMs) into software engineering has revolutionized code generation, enabling unprecedented productivity through promptware and autonomous AI agents. However, this transformation introduces significant risks, including insecure code generation, hallucinated outputs, irreversible actions, and a lack of transparency and accountability. Incidents like the Replit database deletion underscore the urgent need for robust safety and governance mechanisms. This paper comprehensively analyzes the inherent challenges of LLM-assisted code generation, such as vulnerability inheritance, overtrust, misinterpretation, and the absence of standardized validation and rollback protocols. To address these, we propose the SAFE-AI Framework, a holistic approach emphasizing Safety, Auditability, Feedback, and Explainability. The framework integrates guardrails, sandboxing, runtime verification, risk-aware logging, human-in-the-loop systems, and explainable AI techniques to mitigate risks while fostering trust and compliance. We introduce a novel taxonomy of AI behaviors categorizing suggestive, generative, autonomous, and destructive actions to guide risk assessment and oversight. Additionally, we identify open problems, including the lack of standardized benchmarks for code specific hallucinations and autonomy levels, and propose future research directions for hybrid verification, semantic guardrails, and proactive governance tools. Through detailed comparisons of autonomy control, prompt engineering, explainability, and governance frameworks, this paper provides a roadmap for responsible AI integration in software engineering, aligning with emerging regulations like the EU AI Act and Canada's AIDA to ensure safe, transparent, and accountable AI-driven development.
Automatic Prompt Optimization Techniques: Exploring the Potential for Synthetic Data Generation
Artificial Intelligence (AI) advancement is heavily dependent on access to large-scale, high-quality training data. However, in specialized domains such as healthcare, data acquisition faces significant constraints due to privacy regulations, ethical considerations, and limited availability. While synthetic data generation offers a promising solution, conventional approaches typically require substantial real data for training generative models. The emergence of large-scale prompt-based models presents new opportunities for synthetic data generation without direct access to protected data. However, crafting effective prompts for domain-specific data generation remains challenging, and manual prompt engineering proves insufficient for achieving output with sufficient precision and authenticity. We review recent developments in automatic prompt optimization, following PRISMA guidelines. We analyze six peer-reviewed studies published between 2020 and 2024 that focus on automatic data-free prompt optimization methods. Our analysis reveals three approaches: feedback-driven, error-based, and control-theoretic. Although all approaches demonstrate promising capabilities in prompt refinement and adaptation, our findings suggest the need for an integrated framework that combines complementary optimization techniques to enhance synthetic data generation while minimizing manual intervention. We propose future research directions toward developing robust, iterative prompt optimization frameworks capable of improving the quality of synthetic data. This advancement can be particularly crucial for sensitive fields and in specialized domains where data access is restricted, potentially transforming how we approach synthetic data generation for AI development.
Video-P2P: Video Editing with Cross-attention Control
This paper presents Video-P2P, a novel framework for real-world video editing with cross-attention control. While attention control has proven effective for image editing with pre-trained image generation models, there are currently no large-scale video generation models publicly available. Video-P2P addresses this limitation by adapting an image generation diffusion model to complete various video editing tasks. Specifically, we propose to first tune a Text-to-Set (T2S) model to complete an approximate inversion and then optimize a shared unconditional embedding to achieve accurate video inversion with a small memory cost. For attention control, we introduce a novel decoupled-guidance strategy, which uses different guidance strategies for the source and target prompts. The optimized unconditional embedding for the source prompt improves reconstruction ability, while an initialized unconditional embedding for the target prompt enhances editability. Incorporating the attention maps of these two branches enables detailed editing. These technical designs enable various text-driven editing applications, including word swap, prompt refinement, and attention re-weighting. Video-P2P works well on real-world videos for generating new characters while optimally preserving their original poses and scenes. It significantly outperforms previous approaches.
Theory-Driven Automated Content Analysis of Suicidal Tweets : Using Typicality-Based Classification for LDA Dataset
This study provides a methodological framework for the computer to classify tweets according to variables of the Theory of Planned Behavior. We present a sequential process of automated text analysis which combined supervised approach and unsupervised approach in order to make the computer to detect one of TPB variables in each tweet. We conducted Latent Dirichlet Allocation (LDA), Nearest Neighbor, and then assessed "typicality" of newly labeled tweets in order to predict classification boundary. Furthermore, this study reports findings from a content analysis of suicide-related tweets which identify traits of information environment in Twitter. Consistent with extant literature about suicide coverage, the findings demonstrate that tweets often contain information which prompt perceived behavior control of committing suicide, while rarely provided deterring information on suicide. We conclude by highlighting implications for methodological advances and empirical theory studies.
Controlling Text-to-Image Diffusion by Orthogonal Finetuning
Large text-to-image diffusion models have impressive capabilities in generating photorealistic images from text prompts. How to effectively guide or control these powerful models to perform different downstream tasks becomes an important open problem. To tackle this challenge, we introduce a principled finetuning method -- Orthogonal Finetuning (OFT), for adapting text-to-image diffusion models to downstream tasks. Unlike existing methods, OFT can provably preserve hyperspherical energy which characterizes the pairwise neuron relationship on the unit hypersphere. We find that this property is crucial for preserving the semantic generation ability of text-to-image diffusion models. To improve finetuning stability, we further propose Constrained Orthogonal Finetuning (COFT) which imposes an additional radius constraint to the hypersphere. Specifically, we consider two important finetuning text-to-image tasks: subject-driven generation where the goal is to generate subject-specific images given a few images of a subject and a text prompt, and controllable generation where the goal is to enable the model to take in additional control signals. We empirically show that our OFT framework outperforms existing methods in generation quality and convergence speed.
360PanT: Training-Free Text-Driven 360-Degree Panorama-to-Panorama Translation
Preserving boundary continuity in the translation of 360-degree panoramas remains a significant challenge for existing text-driven image-to-image translation methods. These methods often produce visually jarring discontinuities at the translated panorama's boundaries, disrupting the immersive experience. To address this issue, we propose 360PanT, a training-free approach to text-based 360-degree panorama-to-panorama translation with boundary continuity. Our 360PanT achieves seamless translations through two key components: boundary continuity encoding and seamless tiling translation with spatial control. Firstly, the boundary continuity encoding embeds critical boundary continuity information of the input 360-degree panorama into the noisy latent representation by constructing an extended input image. Secondly, leveraging this embedded noisy latent representation and guided by a target prompt, the seamless tiling translation with spatial control enables the generation of a translated image with identical left and right halves while adhering to the extended input's structure and semantic layout. This process ensures a final translated 360-degree panorama with seamless boundary continuity. Experimental results on both real-world and synthesized datasets demonstrate the effectiveness of our 360PanT in translating 360-degree panoramas. Code is available at https://github.com/littlewhitesea/360PanT{https://github.com/littlewhitesea/360PanT}.
SynLLM: A Comparative Analysis of Large Language Models for Medical Tabular Synthetic Data Generation via Prompt Engineering
Access to real-world medical data is often restricted due to privacy regulations, posing a significant barrier to the advancement of healthcare research. Synthetic data offers a promising alternative; however, generating realistic, clinically valid, and privacy-conscious records remains a major challenge. Recent advancements in Large Language Models (LLMs) offer new opportunities for structured data generation; however, existing approaches frequently lack systematic prompting strategies and comprehensive, multi-dimensional evaluation frameworks. In this paper, we present SynLLM, a modular framework for generating high-quality synthetic medical tabular data using 20 state-of-the-art open-source LLMs, including LLaMA, Mistral, and GPT variants, guided by structured prompts. We propose four distinct prompt types, ranging from example-driven to rule-based constraints, that encode schema, metadata, and domain knowledge to control generation without model fine-tuning. Our framework features a comprehensive evaluation pipeline that rigorously assesses generated data across statistical fidelity, clinical consistency, and privacy preservation. We evaluate SynLLM across three public medical datasets, including Diabetes, Cirrhosis, and Stroke, using 20 open-source LLMs. Our results show that prompt engineering significantly impacts data quality and privacy risk, with rule-based prompts achieving the best privacy-quality balance. SynLLM establishes that, when guided by well-designed prompts and evaluated with robust, multi-metric criteria, LLMs can generate synthetic medical data that is both clinically plausible and privacy-aware, paving the way for safer and more effective data sharing in healthcare research.
BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing
Subject-driven text-to-image generation models create novel renditions of an input subject based on text prompts. Existing models suffer from lengthy fine-tuning and difficulties preserving the subject fidelity. To overcome these limitations, we introduce BLIP-Diffusion, a new subject-driven image generation model that supports multimodal control which consumes inputs of subject images and text prompts. Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation. We first pre-train the multimodal encoder following BLIP-2 to produce visual representation aligned with the text. Then we design a subject representation learning task which enables a diffusion model to leverage such visual representation and generates new subject renditions. Compared with previous methods such as DreamBooth, our model enables zero-shot subject-driven generation, and efficient fine-tuning for customized subject with up to 20x speedup. We also demonstrate that BLIP-Diffusion can be flexibly combined with existing techniques such as ControlNet and prompt-to-prompt to enable novel subject-driven generation and editing applications. Code and models will be released at https://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion. Project page at https://dxli94.github.io/BLIP-Diffusion-website/.
What's the Magic Word? A Control Theory of LLM Prompting
Prompt engineering is crucial for deploying LLMs but is poorly understood mathematically. We formalize LLM systems as a class of discrete stochastic dynamical systems to explore prompt engineering through the lens of control theory. We investigate the reachable set of output token sequences R_y(mathbf x_0) for which there exists a control input sequence mathbf u for each mathbf y in R_y(mathbf x_0) that steers the LLM to output mathbf y from initial state sequence mathbf x_0. We offer analytic analysis on the limitations on the controllability of self-attention in terms of reachable set, where we prove an upper bound on the reachable set of outputs R_y(mathbf x_0) as a function of the singular values of the parameter matrices. We present complementary empirical analysis on the controllability of a panel of LLMs, including Falcon-7b, Llama-7b, and Falcon-40b. Our results demonstrate a lower bound on the reachable set of outputs R_y(mathbf x_0) w.r.t. initial state sequences mathbf x_0 sampled from the Wikitext dataset. We find that the correct next Wikitext token following sequence mathbf x_0 is reachable over 97% of the time with prompts of kleq 10 tokens. We also establish that the top 75 most likely next tokens, as estimated by the LLM itself, are reachable at least 85% of the time with prompts of kleq 10 tokens. Intriguingly, short prompt sequences can dramatically alter the likelihood of specific outputs, even making the least likely tokens become the most likely ones. This control-centric analysis of LLMs demonstrates the significant and poorly understood role of input sequences in steering output probabilities, offering a foundational perspective for enhancing language model system capabilities.
Linear Feedback Control Systems for Iterative Prompt Optimization in Large Language Models
Large Language Models (LLMs) have revolutionized various applications by generating outputs based on given prompts. However, achieving the desired output requires iterative prompt refinement. This paper presents a novel approach that draws parallels between the iterative prompt optimization process in LLMs and feedback control systems. We iteratively refine the prompt by treating the deviation between the LLM output and the desired result as an error term until the output criteria are met. This process is akin to a feedback control system, where the LLM, despite being non-linear and non-deterministic, is managed using principles from linear feedback control systems. We explore the application of different types of controllers within this framework, providing a mathematical foundation for integrating linear feedback control mechanisms with LLMs.
Controllable Mixed-Initiative Dialogue Generation through Prompting
Mixed-initiative dialogue tasks involve repeated exchanges of information and conversational control. Conversational agents gain control by generating responses that follow particular dialogue intents or strategies, prescribed by a policy planner. The standard approach has been fine-tuning pre-trained language models to perform generation conditioned on these intents. However, these supervised generation models are limited by the cost and quality of data annotation. We instead prompt large language models as a drop-in replacement to fine-tuning on conditional generation. We formalize prompt construction for controllable mixed-initiative dialogue. Our findings show improvements over fine-tuning and ground truth responses according to human evaluation and automatic metrics for two tasks: PersuasionForGood and Emotional Support Conversations.
LLMPC: Large Language Model Predictive Control
Recent advancements in prompting techniques for Large Language Models (LLMs) have improved their reasoning, planning, and action abilities. This paper examines these prompting techniques through the lens of model predictive control (MPC). We show that LLMs act as implicit planning cost function minimizers when planning prompts are used. Under our framework we demonstrate that LLM planning performance can be improved further by incorporating real planning cost functions and evaluators.
PromptWizard: Task-Aware Prompt Optimization Framework
Large language models (LLMs) have transformed AI across diverse domains, with prompting being central to their success in guiding model outputs. However, manual prompt engineering is both labor-intensive and domain-specific, necessitating the need for automated solutions. We introduce PromptWizard, a novel, fully automated framework for discrete prompt optimization, utilizing a self-evolving, self-adapting mechanism. Through a feedback-driven critique and synthesis process, PromptWizard achieves an effective balance between exploration and exploitation, iteratively refining both prompt instructions and in-context examples to generate human-readable, task-specific prompts. This guided approach systematically improves prompt quality, resulting in superior performance across 45 tasks. PromptWizard excels even with limited training data, smaller LLMs, and various LLM architectures. Additionally, our cost analysis reveals a substantial reduction in API calls, token usage, and overall cost, demonstrating PromptWizard's efficiency, scalability, and advantages over existing prompt optimization strategies.
PRewrite: Prompt Rewriting with Reinforcement Learning
Prompt engineering is critical for the development of LLM-based applications. However, it is usually done manually in a "trial and error" fashion. This manual procedure can be time consuming, ineffective, and the generated prompts are, in a lot of cases, sub-optimal. Even for the prompts which seemingly work well, there is always a lingering question: can the prompts be made better with further modifications? To address these questions, in this paper, we investigate prompt engineering automation. We consider a specific use case scenario in which developers/users have drafted initial prompts, but lack the time/expertise to optimize them. We propose PRewrite, an automated tool to rewrite these drafts and to generate highly effective new prompts. PRewrite is based on the Reinforcement Learning (RL) framework which allows for end-to-end optimization and our design allows the RL search to happen in a large action space. The automated tool leverages manually crafted prompts as starting points which makes the rewriting procedure more guided and efficient. The generated prompts are human readable, and self-explanatory, unlike some of those in previous works. We conducted extensive experiments on diverse datasets and found that the prompts generated with this new method not only outperform professionally crafted prompts, but also prompts generated with other previously proposed methods.
Representing Prompting Patterns with PDL: Compliance Agent Case Study
Prompt engineering for LLMs remains complex, with existing frameworks either hiding complexity behind restrictive APIs or providing inflexible canned patterns that resist customization -- making sophisticated agentic programming challenging. We present the Prompt Declaration Language (PDL), a novel approach to prompt representation that tackles this fundamental complexity by bringing prompts to the forefront, enabling manual and automatic prompt tuning while capturing the composition of LLM calls together with rule-based code and external tools. By abstracting away the plumbing for such compositions, PDL aims at improving programmer productivity while providing a declarative representation that is amenable to optimization. This paper demonstrates PDL's utility through a real-world case study of a compliance agent. Tuning the prompting pattern of this agent yielded up to 4x performance improvement compared to using a canned agent and prompt pattern.
A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization
Highly effective, task-specific prompts are often heavily engineered by experts to integrate detailed instructions and domain insights based on a deep understanding of both instincts of large language models (LLMs) and the intricacies of the target task. However, automating the generation of such expert-level prompts remains elusive. Existing prompt optimization methods tend to overlook the depth of domain knowledge and struggle to efficiently explore the vast space of expert-level prompts. Addressing this, we present PromptAgent, an optimization method that autonomously crafts prompts equivalent in quality to those handcrafted by experts. At its core, PromptAgent views prompt optimization as a strategic planning problem and employs a principled planning algorithm, rooted in Monte Carlo tree search, to strategically navigate the expert-level prompt space. Inspired by human-like trial-and-error exploration, PromptAgent induces precise expert-level insights and in-depth instructions by reflecting on model errors and generating constructive error feedback. Such a novel framework allows the agent to iteratively examine intermediate prompts (states), refine them based on error feedbacks (actions), simulate future rewards, and search for high-reward paths leading to expert prompts. We apply PromptAgent to 12 tasks spanning three practical domains: BIG-Bench Hard (BBH), as well as domain-specific and general NLP tasks, showing it significantly outperforms strong Chain-of-Thought and recent prompt optimization baselines. Extensive analyses emphasize its capability to craft expert-level, detailed, and domain-insightful prompts with great efficiency and generalizability.
A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models
Prompt engineering is a technique that involves augmenting a large pre-trained model with task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be created manually as natural language instructions or generated automatically as either natural language instructions or vector representations. Prompt engineering enables the ability to perform predictions based solely on prompts without updating model parameters, and the easier application of large pre-trained models in real-world tasks. In past years, Prompt engineering has been well-studied in natural language processing. Recently, it has also been intensively studied in vision-language modeling. However, there is currently a lack of a systematic overview of prompt engineering on pre-trained vision-language models. This paper aims to provide a comprehensive survey of cutting-edge research in prompt engineering on three types of vision-language models: multimodal-to-text generation models (e.g. Flamingo), image-text matching models (e.g. CLIP), and text-to-image generation models (e.g. Stable Diffusion). For each type of model, a brief model summary, prompting methods, prompting-based applications, and the corresponding responsibility and integrity issues are summarized and discussed. Furthermore, the commonalities and differences between prompting on vision-language models, language models, and vision models are also discussed. The challenges, future directions, and research opportunities are summarized to foster future research on this topic.
MultiPrompter: Cooperative Prompt Optimization with Multi-Agent Reinforcement Learning
Recently, there has been an increasing interest in automated prompt optimization based on reinforcement learning (RL). This approach offers important advantages, such as generating interpretable prompts and being compatible with black-box foundation models. However, the substantial prompt space size poses challenges for RL-based methods, often leading to suboptimal policy convergence. This paper introduces MultiPrompter, a new framework that views prompt optimization as a cooperative game between prompters which take turns composing a prompt together. Our cooperative prompt optimization effectively reduces the problem size and helps prompters learn optimal prompts. We test our method on the text-to-image task and show its ability to generate higher-quality images than baselines.
Prompt a Robot to Walk with Large Language Models
Large language models (LLMs) pre-trained on vast internet-scale data have showcased remarkable capabilities across diverse domains. Recently, there has been escalating interest in deploying LLMs for robotics, aiming to harness the power of foundation models in real-world settings. However, this approach faces significant challenges, particularly in grounding these models in the physical world and in generating dynamic robot motions. To address these issues, we introduce a novel paradigm in which we use few-shot prompts collected from the physical environment, enabling the LLM to autoregressively generate low-level control commands for robots without task-specific fine-tuning. Experiments across various robots and environments validate that our method can effectively prompt a robot to walk. We thus illustrate how LLMs can proficiently function as low-level feedback controllers for dynamic motion control even in high-dimensional robotic systems. The project website and source code can be found at: https://prompt2walk.github.io/ .
Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models
Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows a "reporting bias" when used as control, and PromptGen can further de-bias this controlled distribution in an iterative manner. The code is available at https://github.com/ChenWu98/Generative-Visual-Prompt.
Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
Prompt learning has emerged as an efficient alternative for fine-tuning foundational models, such as CLIP, for various downstream tasks. Conventionally trained using the task-specific objective, i.e., cross-entropy loss, prompts tend to overfit downstream data distributions and find it challenging to capture task-agnostic general features from the frozen CLIP. This leads to the loss of the model's original generalization capability. To address this issue, our work introduces a self-regularization framework for prompting called PromptSRC (Prompting with Self-regulating Constraints). PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations using a three-pronged approach by: (a) regulating prompted representations via mutual agreement maximization with the frozen model, (b) regulating with self-ensemble of prompts over the training trajectory to encode their complementary strengths, and (c) regulating with textual diversity to mitigate sample diversity imbalance with the visual branch. To the best of our knowledge, this is the first regularization framework for prompt learning that avoids overfitting by jointly attending to pre-trained model features, the training trajectory during prompting, and the textual diversity. PromptSRC explicitly steers the prompts to learn a representation space that maximizes performance on downstream tasks without compromising CLIP generalization. We perform extensive experiments on 4 benchmarks where PromptSRC overall performs favorably well compared to the existing methods. Our code and pre-trained models are publicly available at: https://github.com/muzairkhattak/PromptSRC.
Minstrel: Structural Prompt Generation with Multi-Agents Coordination for Non-AI Experts
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to assist them in their work poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structural design, incurring high learning costs and it is not conducive to the iterative updating of prompts, especially for non-AI experts. Inspired by structured reusable programming languages, we propose LangGPT, a structural prompt design framework. Furthermore, we introduce Minstrel, a multi-generative agent system with reflection to automate the generation of structural prompts. Experiments and the case study illustrate that structural prompts generated by Minstrel or written manually significantly enhance the performance of LLMs. Furthermore, we analyze the ease of use of structural prompts through a user survey in our online community.
RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning
Prompting has shown impressive success in enabling large pretrained language models (LMs) to perform diverse NLP tasks, especially when only few downstream data are available. Automatically finding the optimal prompt for each task, however, is challenging. Most existing work resorts to tuning soft prompt (e.g., embeddings) which falls short of interpretability, reusability across LMs, and applicability when gradients are not accessible. Discrete prompt, on the other hand, is difficult to optimize, and is often created by "enumeration (e.g., paraphrasing)-then-selection" heuristics that do not explore the prompt space systematically. This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL). RLPrompt formulates a parameter-efficient policy network that generates the desired discrete prompt after training with reward. To overcome the complexity and stochasticity of reward signals by the large LM environment, we incorporate effective reward stabilization that substantially enhances the training efficiency. RLPrompt is flexibly applicable to different types of LMs, such as masked (e.g., BERT) and left-to-right models (e.g., GPTs), for both classification and generation tasks. Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods. Interestingly, the resulting optimized prompts are often ungrammatical gibberish text; and surprisingly, those gibberish prompts are transferrable between different LMs to retain significant performance, indicating LM prompting may not follow human language patterns.
Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
This paper delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs). Prompt engineering is the process of structuring input text for LLMs and is a technique integral to optimizing the efficacy of LLMs. This survey elucidates foundational principles of prompt engineering, such as role-prompting, one-shot, and few-shot prompting, as well as more advanced methodologies such as the chain-of-thought and tree-of-thoughts prompting. The paper sheds light on how external assistance in the form of plugins can assist in this task, and reduce machine hallucination by retrieving external knowledge. We subsequently delineate prospective directions in prompt engineering research, emphasizing the need for a deeper understanding of structures and the role of agents in Artificial Intelligence-Generated Content (AIGC) tools. We discuss how to assess the efficacy of prompt methods from different perspectives and using different methods. Finally, we gather information about the application of prompt engineering in such fields as education and programming, showing its transformative potential. This comprehensive survey aims to serve as a friendly guide for anyone venturing through the big world of LLMs and prompt engineering.
What You Say = What You Want? Teaching Humans to Articulate Requirements for LLMs
Prompting ChatGPT to achieve complex goals (e.g., creating a customer support chatbot) often demands meticulous prompt engineering, including aspects like fluent writing and chain-of-thought techniques. While emerging prompt optimizers can automatically refine many of these aspects, we argue that clearly conveying customized requirements (e.g., how to handle diverse inputs) remains a human-centric challenge. In this work, we introduce Requirement-Oriented Prompt Engineering (ROPE), a paradigm that focuses human attention on generating clear, complete requirements during prompting. We implement ROPE through an assessment and training suite that provides deliberate practice with LLM-generated feedback. In a study with 30 novices, we show that requirement-focused training doubles novices' prompting performance, significantly outperforming conventional prompt engineering training and prompt optimization. We also demonstrate that high-quality LLM outputs are directly tied to the quality of input requirements. Our work paves the way for more effective task delegation in human-LLM collaborative prompting.
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models
The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.
Prompt reinforcing for long-term planning of large language models
Large language models (LLMs) have achieved remarkable success in a wide range of natural language processing tasks and can be adapted through prompting. However, they remain suboptimal in multi-turn interactions, often relying on incorrect early assumptions and failing to track user goals over time, which makes such tasks particularly challenging. Prior works in dialogue systems have shown that long-term planning is essential for handling interactive tasks. In this work, we propose a prompt optimisation framework inspired by reinforcement learning, which enables such planning to take place by only modifying the task instruction prompt of the LLM-based agent. By generating turn-by-turn feedback and leveraging experience replay for prompt rewriting, our proposed method shows significant improvement in multi-turn tasks such as text-to-SQL and task-oriented dialogue. Moreover, it generalises across different LLM-based agents and can leverage diverse LLMs as meta-prompting agents. This warrants future research in reinforcement learning-inspired parameter-free optimisation methods.
Promptor: A Conversational and Autonomous Prompt Generation Agent for Intelligent Text Entry Techniques
Text entry is an essential task in our day-to-day digital interactions. Numerous intelligent features have been developed to streamline this process, making text entry more effective, efficient, and fluid. These improvements include sentence prediction and user personalization. However, as deep learning-based language models become the norm for these advanced features, the necessity for data collection and model fine-tuning increases. These challenges can be mitigated by harnessing the in-context learning capability of large language models such as GPT-3.5. This unique feature allows the language model to acquire new skills through prompts, eliminating the need for data collection and fine-tuning. Consequently, large language models can learn various text prediction techniques. We initially showed that, for a sentence prediction task, merely prompting GPT-3.5 surpassed a GPT-2 backed system and is comparable with a fine-tuned GPT-3.5 model, with the latter two methods requiring costly data collection, fine-tuning and post-processing. However, the task of prompting large language models to specialize in specific text prediction tasks can be challenging, particularly for designers without expertise in prompt engineering. To address this, we introduce Promptor, a conversational prompt generation agent designed to engage proactively with designers. Promptor can automatically generate complex prompts tailored to meet specific needs, thus offering a solution to this challenge. We conducted a user study involving 24 participants creating prompts for three intelligent text entry tasks, half of the participants used Promptor while the other half designed prompts themselves. The results show that Promptor-designed prompts result in a 35% increase in similarity and 22% in coherence over those by designers.
Are Large Language Models Good Prompt Optimizers?
LLM-based Automatic Prompt Optimization, which typically utilizes LLMs as Prompt Optimizers to self-reflect and refine prompts, has shown promising performance in recent studies. Despite the success, the underlying mechanism of this approach remains unexplored, and the true effectiveness of LLMs as Prompt Optimizers requires further validation. In this work, we conducted a comprehensive study to uncover the actual mechanism of LLM-based Prompt Optimization. Our findings reveal that the LLM optimizers struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge rather than genuinely reflecting on the errors. Furthermore, even when the reflection is semantically valid, the LLM optimizers often fail to generate appropriate prompts for the target models with a single prompt refinement step, partly due to the unpredictable behaviors of the target models. Based on the observations, we introduce a new "Automatic Behavior Optimization" paradigm, which directly optimizes the target model's behavior in a more controllable manner. We hope our study can inspire new directions for automatic prompt optimization development.
Motion Prompting: Controlling Video Generation with Motion Trajectories
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
In-Video Instructions: Visual Signals as Generative Control
Large-scale video generative models have recently demonstrated strong visual capabilities, enabling the prediction of future frames that adhere to the logical and physical cues in the current observation. In this work, we investigate whether such capabilities can be harnessed for controllable image-to-video generation by interpreting visual signals embedded within the frames as instructions, a paradigm we term In-Video Instruction. In contrast to prompt-based control, which provides textual descriptions that are inherently global and coarse, In-Video Instruction encodes user guidance directly into the visual domain through elements such as overlaid text, arrows, or trajectories. This enables explicit, spatial-aware, and unambiguous correspondences between visual subjects and their intended actions by assigning distinct instructions to different objects. Extensive experiments on three state-of-the-art generators, including Veo 3.1, Kling 2.5, and Wan 2.2, show that video models can reliably interpret and execute such visually embedded instructions, particularly in complex multi-object scenarios.
RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning
The advent of the "pre-train, prompt" paradigm has recently extended its generalization ability and data efficiency to graph representation learning, following its achievements in Natural Language Processing (NLP). Initial graph prompt tuning approaches tailored specialized prompting functions for Graph Neural Network (GNN) models pre-trained with specific strategies, such as edge prediction, thus limiting their applicability. In contrast, another pioneering line of research has explored universal prompting via adding prompts to the input graph's feature space, thereby removing the reliance on specific pre-training strategies. However, the necessity to add feature prompts to all nodes remains an open question. Motivated by findings from prompt tuning research in the NLP domain, which suggest that highly capable pre-trained models need less conditioning signal to achieve desired behaviors, we advocate for strategically incorporating necessary and lightweight feature prompts to certain graph nodes to enhance downstream task performance. This introduces a combinatorial optimization problem, requiring a policy to decide 1) which nodes to prompt and 2) what specific feature prompts to attach. We then address the problem by framing the prompt incorporation process as a sequential decision-making problem and propose our method, RELIEF, which employs Reinforcement Learning (RL) to optimize it. At each step, the RL agent selects a node (discrete action) and determines the prompt content (continuous action), aiming to maximize cumulative performance gain. Extensive experiments on graph and node-level tasks with various pre-training strategies in few-shot scenarios demonstrate that our RELIEF outperforms fine-tuning and other prompt-based approaches in classification performance and data efficiency.
MODP: Multi Objective Directional Prompting
Recent advances in large language models (LLMs) have led to their popularity across multiple use-cases. However, prompt engineering, the process for optimally utilizing such models, remains approximation-driven and subjective. Most of the current research on prompt engineering focuses on task-specific optimization, while neglecting the behavior of the LLM under consideration during prompt development. This paper introduces MODP -- Multi Objective Directional Prompting, a framework based on two key concepts: 1) multi-objectivity: the importance of considering an LLM's intrinsic behavior as an additional objective in prompt development, and 2) directional prompting: a metrics-driven method for prompt engineering to ensure development of robust and high-precision prompts. We demonstrate the effectiveness of our proposed ideas on a summarization task, using a synthetically created dataset, achieving a 26% performance gain over initial prompts. Finally, we apply MODP to develop prompts for Dell's Next Best Action support tool, which is now in production and is used by more than 10,000 internal support agents and serving millions of customers worldwide.
Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection
Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT
Prompt engineering is an increasingly important skill set needed to converse effectively with large language models (LLMs), such as ChatGPT. Prompts are instructions given to an LLM to enforce rules, automate processes, and ensure specific qualities (and quantities) of generated output. Prompts are also a form of programming that can customize the outputs and interactions with an LLM. This paper describes a catalog of prompt engineering techniques presented in pattern form that have been applied to solve common problems when conversing with LLMs. Prompt patterns are a knowledge transfer method analogous to software patterns since they provide reusable solutions to common problems faced in a particular context, i.e., output generation and interaction when working with LLMs. This paper provides the following contributions to research on prompt engineering that apply LLMs to automate software development tasks. First, it provides a framework for documenting patterns for structuring prompts to solve a range of problems so that they can be adapted to different domains. Second, it presents a catalog of patterns that have been applied successfully to improve the outputs of LLM conversations. Third, it explains how prompts can be built from multiple patterns and illustrates prompt patterns that benefit from combination with other prompt patterns.
CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs
Effective prompt design is essential for improving the planning capabilities of large language model (LLM)-driven agents. However, existing structured prompting strategies are typically limited to single-agent, plan-only settings, and often evaluate performance solely based on task accuracy - overlooking critical factors such as token efficiency, modularity, and scalability in multi-agent environments. To address these limitations, we introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems. In CodeAgents, all components of agent interaction - Task, Plan, Feedback, system roles, and external tool invocations - are codified into modular pseudocode enriched with control structures (e.g., loops, conditionals), boolean logic, and typed variables. This design transforms loosely connected agent plans into cohesive, interpretable, and verifiable multi-agent reasoning programs. We evaluate the proposed framework across three diverse benchmarks - GAIA, HotpotQA, and VirtualHome - using a range of representative LLMs. Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines. On VirtualHome, our method achieves a new state-of-the-art success rate of 56%. In addition, our approach reduces input and output token usage by 55-87% and 41-70%, respectively, underscoring the importance of token-aware evaluation metrics in the development of scalable multi-agent LLM systems. The code and resources are available at: https://anonymous.4open.science/r/CodifyingAgent-5A86
Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning
Prompt-based learning has been demonstrated as a compelling paradigm contributing to large language models' tremendous success (LLMs). Inspired by their success in language tasks, existing research has leveraged LLMs in embodied instruction following and task planning. However, not much attention has been paid to embodied tasks with multimodal prompts, combining vision signals with text descriptions. This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals. In this work, we introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts from multi-task expert trajectories. Our methods consist of a two-stage training pipeline that performs inverse dynamics pretraining and multi-task finetuning. To facilitate multimodal understanding, we design our multimodal prompt encoder by augmenting a pretrained LM with a residual connection to the visual input and model the dependencies among action dimensions. Empirically, we evaluate the efficacy of our method on the VIMA-BENCH and establish a new state-of-the-art (10% improvement in success rate). Moreover, we demonstrate that our model exhibits remarkable in-context learning ability.
PromptFix: You Prompt and We Fix the Photo
Diffusion models equipped with language models demonstrate excellent controllability in image generation tasks, allowing image processing to adhere to human instructions. However, the lack of diverse instruction-following data hampers the development of models that effectively recognize and execute user-customized instructions, particularly in low-level tasks. Moreover, the stochastic nature of the diffusion process leads to deficiencies in image generation or editing tasks that require the detailed preservation of the generated images. To address these limitations, we propose PromptFix, a comprehensive framework that enables diffusion models to follow human instructions to perform a wide variety of image-processing tasks. First, we construct a large-scale instruction-following dataset that covers comprehensive image-processing tasks, including low-level tasks, image editing, and object creation. Next, we propose a high-frequency guidance sampling method to explicitly control the denoising process and preserve high-frequency details in unprocessed areas. Finally, we design an auxiliary prompting adapter, utilizing Vision-Language Models (VLMs) to enhance text prompts and improve the model's task generalization. Experimental results show that PromptFix outperforms previous methods in various image-processing tasks. Our proposed model also achieves comparable inference efficiency with these baseline models and exhibits superior zero-shot capabilities in blind restoration and combination tasks. The dataset and code are available at https://www.yongshengyu.com/PromptFix-Page.
InfoPrompt: Information-Theoretic Soft Prompt Tuning for Natural Language Understanding
Soft prompt tuning achieves superior performances across a wide range of few-shot tasks. However, the performances of prompt tuning can be highly sensitive to the initialization of the prompts. We also empirically observe that conventional prompt tuning methods cannot encode and learn sufficient task-relevant information from prompt tokens. In this work, we develop an information-theoretic framework that formulates soft prompt tuning as maximizing mutual information between prompts and other model parameters (or encoded representations). This novel view helps us to develop a more efficient, accurate and robust soft prompt tuning method InfoPrompt. With this framework, we develop two novel mutual information based loss functions, to (i) discover proper prompt initialization for the downstream tasks and learn sufficient task-relevant information from prompt tokens and (ii) encourage the output representation from the pretrained language model to be more aware of the task-relevant information captured in the learnt prompt. Extensive experiments validate that InfoPrompt can significantly accelerate the convergence of the prompt tuning and outperform traditional prompt tuning methods. Finally, we provide a formal theoretical result for showing to show that gradient descent type algorithm can be used to train our mutual information loss.
PromptSet: A Programmer's Prompting Dataset
The rise of capabilities expressed by large language models has been quickly followed by the integration of the same complex systems into application level logic. Algorithms, programs, systems, and companies are built around structured prompting to black box models where the majority of the design and implementation lies in capturing and quantifying the `agent mode'. The standard way to shape a closed language model is to prime it for a specific task with a tailored prompt, often initially handwritten by a human. The textual prompts co-evolve with the codebase, taking shape over the course of project life as artifacts which must be reviewed and maintained, just as the traditional code files might be. Unlike traditional code, we find that prompts do not receive effective static testing and linting to prevent runtime issues. In this work, we present a novel dataset called PromptSet, with more than 61,000 unique developer prompts used in open source Python programs. We perform analysis on this dataset and introduce the notion of a static linter for prompts. Released with this publication is a HuggingFace dataset and a Github repository to recreate collection and processing efforts, both under the name pisterlabs/promptset.
SPRIG: Improving Large Language Model Performance by System Prompt Optimization
Large Language Models (LLMs) have shown impressive capabilities in many scenarios, but their performance depends, in part, on the choice of prompt. Past research has focused on optimizing prompts specific to a task. However, much less attention has been given to optimizing the general instructions included in a prompt, known as a system prompt. To address this gap, we propose SPRIG, an edit-based genetic algorithm that iteratively constructs prompts from prespecified components to maximize the model's performance in general scenarios. We evaluate the performance of system prompts on a collection of 47 different types of tasks to ensure generalizability. Our study finds that a single optimized system prompt performs on par with task prompts optimized for each individual task. Moreover, combining system and task-level optimizations leads to further improvement, which showcases their complementary nature. Experiments also reveal that the optimized system prompts generalize effectively across model families, parameter sizes, and languages. This study provides insights into the role of system-level instructions in maximizing LLM potential.
ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate action sequences directly, given an instruction in natural language with no additional domain information. However, such methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with program-like specifications of the available actions and objects in an environment, as well as with example programs that can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical robot arm for tabletop tasks. Website at progprompt.github.io
Plum: Prompt Learning using Metaheuristic
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in black-box prompt learning and Chain-of-Thought prompt tuning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in https://github.com/research4pan/Plum.
Control Large Language Models via Divide and Conquer
This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG). We systematically evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications. We conclude that LLMs face significant challenges in consistently satisfying lexical constraints with prompt-based control. We identified three key limitations of LLMs for LCG, including (1) position bias, where LLMs tend to satisfy constraints that appear in specific positions within the input; (2) low responsiveness to decoding parameters, which render minimal impact on control of LLMs; and (3) struggle with handling the inherent complexity of certain constraints (e.g., compound words). To address these issues, we introduce a Divide and Conquer Generation strategy, effective for both white-box and black-box LLMs, to enhance LLMs performance in LCG tasks, which demonstrates over 90% improvement on success rate in the most challenging LCG task. Our analysis provides valuable insights into the performance of LLMs in LCG with prompt-based control, and our proposed strategy offers a pathway to more sophisticated and customized text generation applications.
PromptFlow: Training Prompts Like Neural Networks
Large Language Models (LLMs) have demonstrated profound impact on Natural Language Processing (NLP) tasks. However, their effective deployment across diverse domains often require domain-specific adaptation strategies, as generic models may underperform when faced with specialized data distributions. Recent advances in prompt engineering (PE) offer a promising alternative to extensive retraining by refining input instructions to align LLM outputs with task objectives. This paradigm has emerged as a rapid and versatile approach for model fine-tuning. Despite its potential, manual prompt design remains labor-intensive and heavily depends on specialized expertise, often requiring iterative human effort to achieve optimal formulations. To address this limitation, automated prompt engineering methodologies have been developed to systematically generate task-specific prompts. However, current implementations predominantly employ static update rules and lack mechanisms for dynamic strategy selection, resulting in suboptimal adaptation to varying NLP task requirements. Furthermore, most methods treat and update the whole prompts at each step, without considering editing prompt sections at a finer granularity. At last, in particular, the problem of how to recycle experience in LLM is still underexplored. To this end, we propose the PromptFlow, a modular training framework inspired by TensorFlow, which integrates meta-prompts, operators, optimization, and evaluator. Our framework can be equipped with the latest optimization methods and autonomously explores optimal prompt refinement trajectories through gradient-based meta-learning, requiring minimal task-specific training data. Specifically, we devise a reinforcement learning method to recycle experience for LLM in the PE process. Finally, we conduct extensive experiments on various datasets, and demonstrate the effectiveness of PromptFlow.
Language Models as Zero-Shot Trajectory Generators
Large Language Models (LLMs) have recently shown promise as high-level planners for robots when given access to a selection of low-level skills. However, it is often assumed that LLMs do not possess sufficient knowledge to be used for the low-level trajectories themselves. In this work, we address this assumption thoroughly, and investigate if an LLM (GPT-4) can directly predict a dense sequence of end-effector poses for manipulation skills, when given access to only object detection and segmentation vision models. We study how well a single task-agnostic prompt, without any in-context examples, motion primitives, or external trajectory optimisers, can perform across 26 real-world language-based tasks, such as "open the bottle cap" and "wipe the plate with the sponge", and we investigate which design choices in this prompt are the most effective. Our conclusions raise the assumed limit of LLMs for robotics, and we reveal for the first time that LLMs do indeed possess an understanding of low-level robot control sufficient for a range of common tasks, and that they can additionally detect failures and then re-plan trajectories accordingly. Videos, code, and prompts are available at: https://www.robot-learning.uk/language-models-trajectory-generators.
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
The strength of modern generative models lies in their ability to be controlled through text-based prompts. Typical "hard" prompts are made from interpretable words and tokens, and must be hand-crafted by humans. There are also "soft" prompts, which consist of continuous feature vectors. These can be discovered using powerful optimization methods, but they cannot be easily interpreted, re-used across models, or plugged into a text-based interface. We describe an approach to robustly optimize hard text prompts through efficient gradient-based optimization. Our approach automatically generates hard text-based prompts for both text-to-image and text-to-text applications. In the text-to-image setting, the method creates hard prompts for diffusion models, allowing API users to easily generate, discover, and mix and match image concepts without prior knowledge on how to prompt the model. In the text-to-text setting, we show that hard prompts can be automatically discovered that are effective in tuning LMs for classification.
Intent-based Prompt Calibration: Enhancing prompt optimization with synthetic boundary cases
Prompt engineering is a challenging and important task due to the high sensitivity of Large Language Models (LLMs) to the given prompt and the inherent ambiguity of a textual task instruction. Automatic prompt engineering is essential to achieve optimized performance from LLMs. Recent studies have demonstrated the capabilities of LLMs to automatically conduct prompt engineering by employing a meta-prompt that incorporates the outcomes of the last trials and proposes an improved prompt. However, this requires a high-quality benchmark to compare different prompts, which is difficult and expensive to acquire in many real-world use cases. In this work, we introduce a new method for automatic prompt engineering, using a calibration process that iteratively refines the prompt to the user intent. During the optimization process, the system jointly generates synthetic data of boundary use cases and optimizes the prompt according to the generated dataset. We demonstrate the effectiveness of our method with respect to strong proprietary models on real-world tasks such as moderation and generation. Our method outperforms state-of-the-art methods with a limited number of annotated samples. Furthermore, we validate the advantages of each one of the system's key components. Our system is built in a modular way, facilitating easy adaptation to other tasks. The code is available https://github.com/Eladlev/AutoPrompt{here}.
PromptIntern: Saving Inference Costs by Internalizing Recurrent Prompt during Large Language Model Fine-tuning
Large language models (LLMs) have played a fundamental role in various natural language processing tasks with powerful prompt techniques. However, in real-world applications, there are often similar prompt components for repeated queries, which causes significant computational burdens during inference. Existing prompt compression and direct fine-tuning methods aim to tackle these challenges, yet they frequently struggle to strike an optimal balance between cost-efficiency and performance effectiveness, especially in complex tasks such as NL2Code. In this paper, we propose a novel method namely PromptIntern to internalize the prompt knowledge into model parameters via progressive fine-tuning. Our method enables LLMs to emulate the human learning process for a new task, where detailed templates and examples in a prompt are gradually internalized and phased out progressively as the model grows accustomed to the task. Extensive experiments demonstrate that our method reduces inference tokens over 90%, speedups inference by 4.2 times, and saves 88.3% monetary cost.
Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
Harnessing the Plug-and-Play Controller by Prompting
Controllable text generation is a growing field within natural language generation (NLG) that focuses on producing text that meets specific constraints in real-world applications. Previous approaches, such as plug-and-play controllers (PPCs), aimed to steer the properties of generated text in a flexible manner. However, these methods often compromised the integrity of the language model's decoding process, resulting in less smooth text generation. Alternatively, other techniques utilized multiple attribute prompts to align the generated text with desired attributes, but this approach required prompt design for each attribute and was dependent on the size of the language model. This paper introduces a novel method for flexible attribute control in text generation using pre-trained language models (PLMs). The proposed approach aims to enhance the fluency of generated text by guiding the generation process with PPCs. The key idea is to dynamically adjust the distribution of generated text by modifying prompts, effectively constraining the output space of the language model and influencing the desired attribute. To enable smooth cooperation between the PLM and the PPC, our work innovatively proposes a new model fine-tuning method: Reinforcement Learning with Dynamic Adjust Feedback (RLDAF).This fine-tuning process adapts a small subset of the language model's parameters based on the generating actions taken during the PPC control process. The resulting harmonious collaboration between the PLM and PPC leads to improved smoothness in text generation during inference. Extensive experiments were conducted on the SST2 dataset, and the proposed method outperformed previous approaches in various evaluation metrics, including text fluency and attribute consistency.
Black Box Adversarial Prompting for Foundation Models
Prompting interfaces allow users to quickly adjust the output of generative models in both vision and language. However, small changes and design choices in the prompt can lead to significant differences in the output. In this work, we develop a black-box framework for generating adversarial prompts for unstructured image and text generation. These prompts, which can be standalone or prepended to benign prompts, induce specific behaviors into the generative process, such as generating images of a particular object or generating high perplexity text.
Promptomatix: An Automatic Prompt Optimization Framework for Large Language Models
Large Language Models (LLMs) perform best with well-crafted prompts, yet prompt engineering remains manual, inconsistent, and inaccessible to non-experts. We introduce Promptomatix, an automatic prompt optimization framework that transforms natural language task descriptions into high-quality prompts without requiring manual tuning or domain expertise. Promptomatix supports both a lightweight meta-prompt-based optimizer and a DSPy-powered compiler, with modular design enabling future extension to more advanced frameworks. The system analyzes user intent, generates synthetic training data, selects prompting strategies, and refines prompts using cost-aware objectives. Evaluated across 5 task categories, Promptomatix achieves competitive or superior performance compared to existing libraries, while reducing prompt length and computational overhead making prompt optimization scalable and efficient.
Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective
We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.
5C Prompt Contracts: A Minimalist, Creative-Friendly, Token-Efficient Design Framework for Individual and SME LLM Usage
The progression from traditional prompt engineering to a more rigorous discipline of prompt design marks a pivotal shift in human-LLM interaction. As Large Language Models (LLMs) become increasingly embedded in mission-critical applications, there emerges a pressing need for frameworks that are not only explicit and systematic but also minimal enough to remain practical and broadly accessible. While many existing approaches address prompt structuring through elaborate Domain-Specific Languages (DSLs) or multi-layered templates, such methods can impose significant token and cognitive overhead, potentially constraining the model's creative capacity. In this context, we propose the 5C Prompt Contract, a framework that distills prompt design into five intuitive components: Character, Cause, Constraint, Contingency, and Calibration. This minimal cognitive schema explicitly integrates fallback and output optimization directives, fostering reliable, interpretable, and creatively flexible AI interactions. Experimental results demonstrate that the 5C framework consistently achieves superior input token efficiency while maintaining rich and consistent outputs across diverse LLM architectures (OpenAI, Anthropic, DeepSeek, and Gemini), making it particularly suited for individuals and Small-to-Medium Enterprises (SMEs) with limited AI engineering resources.
Guiding Large Language Models via Directional Stimulus Prompting
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs. Instead of directly adjusting LLMs, our method employs a small tunable policy model (e.g., T5) to generate an auxiliary directional stimulus prompt for each input instance. These directional stimulus prompts act as nuanced, instance-specific hints and clues to guide LLMs in generating desired outcomes, such as including specific keywords in the generated summary. Our approach sidesteps the challenges of direct LLM tuning by optimizing the policy model to explore directional stimulus prompts that align LLMs with desired behaviors. The policy model can be optimized through 1) supervised fine-tuning using labeled data and 2) reinforcement learning from offline or online rewards based on the LLM's output. We assess our method across summarization, dialogue response generation, and chain-of-thought reasoning tasks. Our experiments demonstrate that the framework consistently improves LLMs' (e.g., ChatGPT, Codex, InstructGPT) performance on these supervised tasks using minimal labeled data. Notably, using just 80 dialogues on the MultiWOZ dataset, our approach enhances ChatGPT's performance by an impressive 41.4%, matching or surpassing some fully supervised start-of-the-art models. Additionally, the instance-specific chain-of-thought prompt generated by our approach improves InstructGPT's reasoning accuracy compared to human-crafted or automatically generated prompts. The code and data are publicly available at https://github.com/Leezekun/Directional-Stimulus-Prompting.
Not what you've signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection
Large Language Models (LLMs) are increasingly being integrated into various applications. The functionalities of recent LLMs can be flexibly modulated via natural language prompts. This renders them susceptible to targeted adversarial prompting, e.g., Prompt Injection (PI) attacks enable attackers to override original instructions and employed controls. So far, it was assumed that the user is directly prompting the LLM. But, what if it is not the user prompting? We argue that LLM-Integrated Applications blur the line between data and instructions. We reveal new attack vectors, using Indirect Prompt Injection, that enable adversaries to remotely (without a direct interface) exploit LLM-integrated applications by strategically injecting prompts into data likely to be retrieved. We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities, including data theft, worming, information ecosystem contamination, and other novel security risks. We demonstrate our attacks' practical viability against both real-world systems, such as Bing's GPT-4 powered Chat and code-completion engines, and synthetic applications built on GPT-4. We show how processing retrieved prompts can act as arbitrary code execution, manipulate the application's functionality, and control how and if other APIs are called. Despite the increasing integration and reliance on LLMs, effective mitigations of these emerging threats are currently lacking. By raising awareness of these vulnerabilities and providing key insights into their implications, we aim to promote the safe and responsible deployment of these powerful models and the development of robust defenses that protect users and systems from potential attacks.
UniControl: A Unified Diffusion Model for Controllable Visual Generation In the Wild
Achieving machine autonomy and human control often represent divergent objectives in the design of interactive AI systems. Visual generative foundation models such as Stable Diffusion show promise in navigating these goals, especially when prompted with arbitrary languages. However, they often fall short in generating images with spatial, structural, or geometric controls. The integration of such controls, which can accommodate various visual conditions in a single unified model, remains an unaddressed challenge. In response, we introduce UniControl, a new generative foundation model that consolidates a wide array of controllable condition-to-image (C2I) tasks within a singular framework, while still allowing for arbitrary language prompts. UniControl enables pixel-level-precise image generation, where visual conditions primarily influence the generated structures and language prompts guide the style and context. To equip UniControl with the capacity to handle diverse visual conditions, we augment pretrained text-to-image diffusion models and introduce a task-aware HyperNet to modulate the diffusion models, enabling the adaptation to different C2I tasks simultaneously. Trained on nine unique C2I tasks, UniControl demonstrates impressive zero-shot generation abilities with unseen visual conditions. Experimental results show that UniControl often surpasses the performance of single-task-controlled methods of comparable model sizes. This control versatility positions UniControl as a significant advancement in the realm of controllable visual generation.
Prompt Curriculum Learning for Efficient LLM Post-Training
We introduce Prompt Curriculum Learning (PCL), a lightweight reinforcement learning (RL) algorithm that selects intermediate-difficulty prompts using a learned value model to post-train language models. Since post-training LLMs via RL remains sensitive to batching and prompt selection strategies, we first conduct a series of systematic experiments where we (1) determine the optimal training batch size that balances generation efficiency and gradient quality and (2) establish the importance of focusing on prompts of intermediate difficulty for the policy. We build upon these results to design PCL, which identifies prompts of intermediate difficulty for the current policy in an on-policy manner by using a value model that is concurrently updated based on the current policy. By focusing on informative prompts that yield high effective ratios, PCL achieves either the highest performance or requires significantly less time to reach comparable performance to its counterparts. Compared to rollout-based filtering methods, PCL avoids costly rollouts and achieves 12.1times and 16.9times faster speed on identifying intermediate-difficulty prompts when training on MATH and DeepScaleR, respectively. We further demonstrate that our value model accurately predicts prompt difficulty and allows PCL to focus on progressively more challenging prompts during RL. Our results present a new methodology that delivers improved tradeoff between upper-bound performance and efficiency for reasoning-focused RL.
Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment
The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible.
Prompt-Based Length Controlled Generation with Reinforcement Learning
Large language models (LLMs) like ChatGPT and GPT-4 have attracted great attention given their surprising performance on a wide range of NLP tasks. Length controlled generation of LLMs emerges as an important topic, which enables users to fully leverage the capability of LLMs in more real-world scenarios like generating a proper answer or essay of a desired length. In addition, the autoregressive generation in LLMs is extremely time-consuming, while the ability of controlling this generated length can reduce the inference cost by limiting the length. Therefore, we propose a prompt-based length control method to achieve high-accuracy length controlled generation. In particular, we adopt reinforcement learning with the reward signal given by either trainable or rule-based reward models, which further enhances the length-control ability of LLMs by rewarding outputs that follows pre-defined control instruction. To enable rule-based inference, we also introduce standard prompt extractor to collect the standard control information from users' input. Experiments show that our method significantly improves the accuracy of prompt-based length control for summarization task on popular datasets like CNNDM and NYT. Both the standard prompt extractor and the RL-tuned model have show strong generalization ability to unseen control prompt templates.
PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs
Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding. This opens the door to richer interaction with the world, for example robotic control. However, VLMs produce only textual outputs, while robotic control and other spatial tasks require outputting continuous coordinates, actions, or trajectories. How can we enable VLMs to handle such settings without fine-tuning on task-specific data? In this paper, we propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT), which casts tasks as iterative visual question answering. In each iteration, the image is annotated with a visual representation of proposals that the VLM can refer to (e.g., candidate robot actions, localizations, or trajectories). The VLM then selects the best ones for the task. These proposals are iteratively refined, allowing the VLM to eventually zero in on the best available answer. We investigate PIVOT on real-world robotic navigation, real-world manipulation from images, instruction following in simulation, and additional spatial inference tasks such as localization. We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities. Although current performance is far from perfect, our work highlights potentials and limitations of this new regime and shows a promising approach for Internet-Scale VLMs in robotic and spatial reasoning domains. Website: pivot-prompt.github.io and HuggingFace: https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo.
A Survey on GUI Agents with Foundation Models Enhanced by Reinforcement Learning
Graphical User Interface (GUI) agents, driven by Multi-modal Large Language Models (MLLMs), have emerged as a promising paradigm for enabling intelligent interaction with digital systems. This paper provides a structured survey of recent advances in GUI agents, focusing on architectures enhanced by Reinforcement Learning (RL). We first formalize GUI agent tasks as Markov Decision Processes and discuss typical execution environments and evaluation metrics. We then review the modular architecture of (M)LLM-based GUI agents, covering Perception, Planning, and Acting modules, and trace their evolution through representative works. Furthermore, we categorize GUI agent training methodologies into Prompt-based, Supervised Fine-Tuning (SFT)-based, and RL-based approaches, highlighting the progression from simple prompt engineering to dynamic policy learning via RL. Our summary illustrates how recent innovations in multimodal perception, decision reasoning, and adaptive action generation have significantly improved the generalization and robustness of GUI agents in complex real-world environments. We conclude by identifying key challenges and future directions for building more capable and reliable GUI agents.
GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers
The effectiveness of large language models (LLMs) is closely tied to the design of prompts, making prompt optimization essential for enhancing their performance across a wide range of tasks. Many existing approaches to automating prompt engineering rely exclusively on textual feedback, refining prompts based solely on inference errors identified by large, computationally expensive LLMs. Unfortunately, smaller models struggle to generate high-quality feedback, resulting in complete dependence on large LLM judgment. Moreover, these methods fail to leverage more direct and finer-grained information, such as gradients, due to operating purely in text space. To this end, we introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning. By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models without the need for costly closed-source LLMs. This allows high-performance prompt optimization without dependence on massive LLMs, closing the gap between smaller models and the sophisticated reasoning often needed for prompt refinement. Extensive evaluations across diverse reasoning tasks including BBH, GSM8k, and FOLIO demonstrate that GReaTer consistently outperforms previous state-of-the-art prompt optimization methods, even those reliant on powerful LLMs. Additionally, GReaTer-optimized prompts frequently exhibit better transferability and, in some cases, boost task performance to levels comparable to or surpassing those achieved by larger language models, highlighting the effectiveness of prompt optimization guided by gradients over reasoning. Code of GReaTer is available at https://github.com/psunlpgroup/GreaTer.
Do LLMs Work on Charts? Designing Few-Shot Prompts for Chart Question Answering and Summarization
A number of tasks have been proposed recently to facilitate easy access to charts such as chart QA and summarization. The dominant paradigm to solve these tasks has been to fine-tune a pretrained model on the task data. However, this approach is not only expensive but also not generalizable to unseen tasks. On the other hand, large language models (LLMs) have shown impressive generalization capabilities to unseen tasks with zero- or few-shot prompting. However, their application to chart-related tasks is not trivial as these tasks typically involve considering not only the underlying data but also the visual features in the chart image. We propose PromptChart, a multimodal few-shot prompting framework with LLMs for chart-related applications. By analyzing the tasks carefully, we have come up with a set of prompting guidelines for each task to elicit the best few-shot performance from LLMs. We further propose a strategy to inject visual information into the prompts. Our experiments on three different chart-related information consumption tasks show that with properly designed prompts LLMs can excel on the benchmarks, achieving state-of-the-art.
Prompt Engineering a Prompt Engineer
Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.
Empowering Large Language Models on Robotic Manipulation with Affordance Prompting
While large language models (LLMs) are successful in completing various language processing tasks, they easily fail to interact with the physical world by generating control sequences properly. We find that the main reason is that LLMs are not grounded in the physical world. Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies, making it hard to adapt to new tasks. In contrast, we aim to address this problem and explore the possibility to prompt pre-trained LLMs to accomplish a series of robotic manipulation tasks in a training-free paradigm. Accordingly, we propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner (that generates high-level plans) and the motion controller (that generates low-level control sequences). To ground these plans and control sequences on the physical world, we develop the affordance prompting technique that stimulates the LLM to 1) predict the consequences of generated plans and 2) generate affordance values for relevant objects. Empirically, we evaluate the effectiveness of LLM+A in various language-conditioned robotic manipulation tasks, which show that our approach substantially improves performance by enhancing the feasibility of generated plans and control and can easily generalize to different environments.
LucidDreaming: Controllable Object-Centric 3D Generation
With the recent development of generative models, Text-to-3D generations have also seen significant growth. Nonetheless, achieving precise control over 3D generation continues to be an arduous task, as using text to control often leads to missing objects and imprecise locations. Contemporary strategies for enhancing controllability in 3D generation often entail the introduction of additional parameters, such as customized diffusion models. This often induces hardness in adapting to different diffusion models or creating distinct objects. In this paper, we present LucidDreaming as an effective pipeline capable of fine-grained control over 3D generation. It requires only minimal input of 3D bounding boxes, which can be deduced from a simple text prompt using a Large Language Model. Specifically, we propose clipped ray sampling to separately render and optimize objects with user specifications. We also introduce object-centric density blob bias, fostering the separation of generated objects. With individual rendering and optimizing of objects, our method excels not only in controlled content generation from scratch but also within the pre-trained NeRF scenes. In such scenarios, existing generative approaches often disrupt the integrity of the original scene, and current editing methods struggle to synthesize new content in empty spaces. We show that our method exhibits remarkable adaptability across a spectrum of mainstream Score Distillation Sampling-based 3D generation frameworks, and achieves superior alignment of 3D content when compared to baseline approaches. We also provide a dataset of prompts with 3D bounding boxes, benchmarking 3D spatial controllability.
ROSGPT_Vision: Commanding Robots Using Only Language Models' Prompts
In this paper, we argue that the next generation of robots can be commanded using only Language Models' prompts. Every prompt interrogates separately a specific Robotic Modality via its Modality Language Model (MLM). A central Task Modality mediates the whole communication to execute the robotic mission via a Large Language Model (LLM). This paper gives this new robotic design pattern the name of: Prompting Robotic Modalities (PRM). Moreover, this paper applies this PRM design pattern in building a new robotic framework named ROSGPT_Vision. ROSGPT_Vision allows the execution of a robotic task using only two prompts: a Visual and an LLM prompt. The Visual Prompt extracts, in natural language, the visual semantic features related to the task under consideration (Visual Robotic Modality). Meanwhile, the LLM Prompt regulates the robotic reaction to the visual description (Task Modality). The framework automates all the mechanisms behind these two prompts. The framework enables the robot to address complex real-world scenarios by processing visual data, making informed decisions, and carrying out actions automatically. The framework comprises one generic vision module and two independent ROS nodes. As a test application, we used ROSGPT_Vision to develop CarMate, which monitors the driver's distraction on the roads and makes real-time vocal notifications to the driver. We showed how ROSGPT_Vision significantly reduced the development cost compared to traditional methods. We demonstrated how to improve the quality of the application by optimizing the prompting strategies, without delving into technical details. ROSGPT_Vision is shared with the community (link: https://github.com/bilel-bj/ROSGPT_Vision) to advance robotic research in this direction and to build more robotic frameworks that implement the PRM design pattern and enables controlling robots using only prompts.
Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models
Prompt engineering is an essential technique for enhancing the abilities of large language models (LLMs) by providing explicit and specific instructions. It enables LLMs to excel in various tasks, such as arithmetic reasoning, question answering, summarization, relation extraction, machine translation, and sentiment analysis. Researchers have been actively exploring different prompt engineering strategies, such as Chain of Thought (CoT), Zero-CoT, and In-context learning. However, an unresolved problem arises from the fact that current approaches lack a solid theoretical foundation for determining optimal prompts. To address this issue in prompt engineering, we propose a new and effective approach called Prompt Space. Our methodology utilizes text embeddings to obtain basis vectors by matrix decomposition, and then constructs a space for representing all prompts. Prompt Space significantly outperforms state-of-the-art prompt paradigms on ten public reasoning benchmarks. Notably, without the help of the CoT method and the prompt "Let's think step by step", Prompt Space shows superior performance over the few-shot method. Overall, our approach provides a robust and fundamental theoretical framework for selecting simple and effective prompts. This advancement marks a significant step towards improving prompt engineering for a wide variety of applications in LLMs.
Large Language Models Are Human-Level Prompt Engineers
By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer.
System Prompt Optimization with Meta-Learning
Large Language Models (LLMs) have shown remarkable capabilities, with optimizing their input prompts playing a pivotal role in maximizing their performance. However, while LLM prompts consist of both the task-agnostic system prompts and task-specific user prompts, existing work on prompt optimization has focused on user prompts specific to individual queries or tasks, and largely overlooked the system prompt that is, once optimized, applicable across different tasks and domains. Motivated by this, we introduce the novel problem of bilevel system prompt optimization, whose objective is to design system prompts that are robust to diverse user prompts and transferable to unseen tasks. To tackle this problem, we then propose a meta-learning framework, which meta-learns the system prompt by optimizing it over various user prompts across multiple datasets, while simultaneously updating the user prompts in an iterative manner to ensure synergy between them. We conduct experiments on 14 unseen datasets spanning 5 different domains, on which we show that our approach produces system prompts that generalize effectively to diverse user prompts. Also, our findings reveal that the optimized system prompt enables rapid adaptation even to unseen tasks, requiring fewer optimization steps for test-time user prompts while achieving improved performance.
Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts
Fine-tuning continuous prompts for target tasks has recently emerged as a compact alternative to full model fine-tuning. Motivated by these promising results, we investigate the feasibility of extracting a discrete (textual) interpretation of continuous prompts that is faithful to the problem they solve. In practice, we observe a "wayward" behavior between the task solved by continuous prompts and their nearest neighbor discrete projections: We can find continuous prompts that solve a task while being projected to an arbitrary text (e.g., definition of a different or even a contradictory task), while being within a very small (2%) margin of the best continuous prompt of the same size for the task. We provide intuitions behind this odd and surprising behavior, as well as extensive empirical analyses quantifying the effect of various parameters. For instance, for larger model sizes we observe higher waywardness, i.e, we can find prompts that more closely map to any arbitrary text with a smaller drop in accuracy. These findings have important implications relating to the difficulty of faithfully interpreting continuous prompts and their generalization across models and tasks, providing guidance for future progress in prompting language models.
ControlThinker: Unveiling Latent Semantics for Controllable Image Generation through Visual Reasoning
The field of controllable image generation has seen significant advancements, with various architectures improving generation layout consistency with control signals. However, contemporary methods still face challenges in bridging the semantic gap between input text prompts with sparse semantics and the target images, often over-relying on low-level control signals to infer regional details. To address this challenge, we propose ControlThinker, a novel framework that employs a "comprehend-then-generate" paradigm. Firstly, by incentivizing the visual reasoning capability of a MLLM, latent semantics from control images are mined to enrich text prompts. This enriched semantic understanding then seamlessly aids in image generation without the need for additional complex modifications. To further tackle the uncertainty arising from the ambiguity of control images, we encourage broader exploration of reasoning trajectories and select the optimal one using a metric-based output reward model (ORM). Extensive experimental results demonstrate that ControlThinker effectively mitigates the semantic gap between raw text prompts and target images, resulting in improved visual quality and semantic consistency across a wide range of benchmarks. The code and models are available at https://github.com/Maplebb/ControlThinker.
NeuroPrompts: An Adaptive Framework to Optimize Prompts for Text-to-Image Generation
Despite impressive recent advances in text-to-image diffusion models, obtaining high-quality images often requires prompt engineering by humans who have developed expertise in using them. In this work, we present NeuroPrompts, an adaptive framework that automatically enhances a user's prompt to improve the quality of generations produced by text-to-image models. Our framework utilizes constrained text decoding with a pre-trained language model that has been adapted to generate prompts similar to those produced by human prompt engineers. This approach enables higher-quality text-to-image generations and provides user control over stylistic features via constraint set specification. We demonstrate the utility of our framework by creating an interactive application for prompt enhancement and image generation using Stable Diffusion. Additionally, we conduct experiments utilizing a large dataset of human-engineered prompts for text-to-image generation and show that our approach automatically produces enhanced prompts that result in superior image quality. We make our code, a screencast video demo and a live demo instance of NeuroPrompts publicly available.
Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
Recent advances have witnessed the effectiveness of reinforcement learning (RL) finetuning in enhancing the reasoning capabilities of large language models (LLMs). The optimization process often requires numerous iterations to achieve satisfactory performance, resulting in high computational costs due to the need for frequent prompt evaluations under intensive LLM interactions and repeated policy updates. Appropriate online prompt selection methods reduce iteration steps by prioritizing informative prompts during training, while the pipeline's reliance on exhaustive prompt evaluation and subset selection for optimization still incurs substantial computational overhead due to frequent LLM inference calls. Distinguished from these direct evaluate-then-select schemes, this work investigates iterative approximate evaluation for arbitrary prompts and introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework that online estimates prompt difficulty without requiring costly LLM interactions. Technically, MoPPS models each prompt's success rate as a latent variable, performs streaming Bayesian inference, and employs posterior sampling in a constructed multi-armed bandit machine, enabling sample efficient and adaptive prompt selection. Extensive experiments across mathematics, planning, and vision-based geometry tasks show that MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced LLM rollouts.
PromptPrism: A Linguistically-Inspired Taxonomy for Prompts
Prompts are the interface for eliciting the capabilities of large language models (LLMs). Understanding their structure and components is critical for analyzing LLM behavior and optimizing performance. However, the field lacks a comprehensive framework for systematic prompt analysis and understanding. We introduce PromptPrism, a linguistically-inspired taxonomy that enables prompt analysis across three hierarchical levels: functional structure, semantic component, and syntactic pattern. We show the practical utility of PromptPrism by applying it to three applications: (1) a taxonomy-guided prompt refinement approach that automatically improves prompt quality and enhances model performance across a range of tasks; (2) a multi-dimensional dataset profiling method that extracts and aggregates structural, semantic, and syntactic characteristics from prompt datasets, enabling comprehensive analysis of prompt distributions and patterns; (3) a controlled experimental framework for prompt sensitivity analysis by quantifying the impact of semantic reordering and delimiter modifications on LLM performance. Our experimental results validate the effectiveness of our taxonomy across these applications, demonstrating that PromptPrism provides a foundation for refining, profiling, and analyzing prompts.
PromptArtisan: Multi-instruction Image Editing in Single Pass with Complete Attention Control
We present PromptArtisan, a groundbreaking approach to multi-instruction image editing that achieves remarkable results in a single pass, eliminating the need for time-consuming iterative refinement. Our method empowers users to provide multiple editing instructions, each associated with a specific mask within the image. This flexibility allows for complex edits involving mask intersections or overlaps, enabling the realization of intricate and nuanced image transformations. PromptArtisan leverages a pre-trained InstructPix2Pix model in conjunction with a novel Complete Attention Control Mechanism (CACM). This mechanism ensures precise adherence to user instructions, granting fine-grained control over the editing process. Furthermore, our approach is zero-shot, requiring no additional training, and boasts improved processing complexity compared to traditional iterative methods. By seamlessly integrating multi-instruction capabilities, single-pass efficiency, and complete attention control, PromptArtisan unlocks new possibilities for creative and efficient image editing workflows, catering to both novice and expert users alike.
Steering Conceptual Bias via Transformer Latent-Subspace Activation
This work examines whether activating latent subspaces in language models (LLMs) can steer scientific code generation toward a specific programming language. Five causal LLMs were first evaluated on scientific coding prompts to quantify their baseline bias among four programming languages. A static neuron-attribution method, perturbing the highest activated MLP weight for a C++ or CPP token, proved brittle and exhibited limited generalization across prompt styles and model scales. To address these limitations, a gradient-refined adaptive activation steering framework (G-ACT) was developed: per-prompt activation differences are clustered into a small set of steering directions, and lightweight per-layer probes are trained and refined online to select the appropriate steering vector. In LLaMA-3.2 3B, this approach reliably biases generation towards the CPP language by increasing the average probe classification accuracy by 15% and the early layers (0-6) improving the probe classification accuracy by 61.5% compared to the standard ACT framework. For LLaMA-3.3 70B, where attention-head signals become more diffuse, targeted injections at key layers still improve language selection. Although per-layer probing introduces a modest inference overhead, it remains practical by steering only a subset of layers and enables reproducible model behavior. These results demonstrate a scalable, interpretable and efficient mechanism for concept-level control for practical agentic systems.
Mixture of Prompt Learning for Vision Language Models
As powerful pre-trained vision-language models (VLMs) like CLIP gain prominence, numerous studies have attempted to combine VLMs for downstream tasks. Among these, prompt learning has been validated as an effective method for adapting to new tasks, which only requiring a small number of parameters. However, current prompt learning methods face two challenges: first, a single soft prompt struggles to capture the diverse styles and patterns within a dataset; second, fine-tuning soft prompts is prone to overfitting. To address these challenges, we propose a mixture of soft prompt learning method incorporating a routing module. This module is able to capture a dataset's varied styles and dynamically selects the most suitable prompts for each instance. Additionally, we introduce a novel gating mechanism to ensure the router selects prompts based on their similarity to hard prompt templates, which both retaining knowledge from hard prompts and improving selection accuracy. We also implement semantically grouped text-level supervision, initializing each soft prompt with the token embeddings of manually designed templates from its group and applied a contrastive loss between the resulted text feature and hard prompt encoded text feature. This supervision ensures that the text features derived from soft prompts remain close to those from their corresponding hard prompts, preserving initial knowledge and mitigating overfitting. Our method has been validated on 11 datasets, demonstrating evident improvements in few-shot learning, domain generalization, and base-to-new generalization scenarios compared to existing baselines. The code will be available at https://anonymous.4open.science/r/mocoop-6387
PromptRPA: Generating Robotic Process Automation on Smartphones from Textual Prompts
Robotic Process Automation (RPA) offers a valuable solution for efficiently automating tasks on the graphical user interface (GUI), by emulating human interactions, without modifying existing code. However, its broader adoption is constrained by the need for expertise in both scripting languages and workflow design. To address this challenge, we present PromptRPA, a system designed to comprehend various task-related textual prompts (e.g., goals, procedures), thereby generating and performing corresponding RPA tasks. PromptRPA incorporates a suite of intelligent agents that mimic human cognitive functions, specializing in interpreting user intent, managing external information for RPA generation, and executing operations on smartphones. The agents can learn from user feedback and continuously improve their performance based on the accumulated knowledge. Experimental results indicated a performance jump from a 22.28% success rate in the baseline to 95.21% with PromptRPA, requiring an average of 1.66 user interventions for each new task. PromptRPA presents promising applications in fields such as tutorial creation, smart assistance, and customer service.
SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions
Human visual imagination usually begins with analogies or rough sketches. For example, given an image with a girl playing guitar before a building, one may analogously imagine how it seems like if Iron Man playing guitar before Pyramid in Egypt. Nonetheless, visual condition may not be precisely aligned with the imaginary result indicated by text prompt, and existing layout-controllable text-to-image (T2I) generation models is prone to producing degraded generated results with obvious artifacts. To address this issue, we present a novel T2I generation method dubbed SmartControl, which is designed to modify the rough visual conditions for adapting to text prompt. The key idea of our SmartControl is to relax the visual condition on the areas that are conflicted with text prompts. In specific, a Control Scale Predictor (CSP) is designed to identify the conflict regions and predict the local control scales, while a dataset with text prompts and rough visual conditions is constructed for training CSP. It is worth noting that, even with a limited number (e.g., 1,000~2,000) of training samples, our SmartControl can generalize well to unseen objects. Extensive experiments on four typical visual condition types clearly show the efficacy of our SmartControl against state-of-the-arts. Source code, pre-trained models, and datasets are available at https://github.com/liuxiaoyu1104/SmartControl.
AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation
The field of text-to-image (T2I) generation has made significant progress in recent years, largely driven by advancements in diffusion models. Linguistic control enables effective content creation, but struggles with fine-grained control over image generation. This challenge has been explored, to a great extent, by incorporating additional user-supplied spatial conditions, such as depth maps and edge maps, into pre-trained T2I models through extra encoding. However, multi-control image synthesis still faces several challenges. Specifically, current approaches are limited in handling free combinations of diverse input control signals, overlook the complex relationships among multiple spatial conditions, and often fail to maintain semantic alignment with provided textual prompts. This can lead to suboptimal user experiences. To address these challenges, we propose AnyControl, a multi-control image synthesis framework that supports arbitrary combinations of diverse control signals. AnyControl develops a novel Multi-Control Encoder that extracts a unified multi-modal embedding to guide the generation process. This approach enables a holistic understanding of user inputs, and produces high-quality, faithful results under versatile control signals, as demonstrated by extensive quantitative and qualitative evaluations. Our project page is available in https://any-control.github.io.
LoGoPrompt: Synthetic Text Images Can Be Good Visual Prompts for Vision-Language Models
Prompt engineering is a powerful tool used to enhance the performance of pre-trained models on downstream tasks. For example, providing the prompt ``Let's think step by step" improved GPT-3's reasoning accuracy to 63% on MutiArith while prompting ``a photo of" filled with a class name enables CLIP to achieve 80\% zero-shot accuracy on ImageNet. While previous research has explored prompt learning for the visual modality, analyzing what constitutes a good visual prompt specifically for image recognition is limited. In addition, existing visual prompt tuning methods' generalization ability is worse than text-only prompting tuning. This paper explores our key insight: synthetic text images are good visual prompts for vision-language models! To achieve that, we propose our LoGoPrompt, which reformulates the classification objective to the visual prompt selection and addresses the chicken-and-egg challenge of first adding synthetic text images as class-wise visual prompts or predicting the class first. Without any trainable visual prompt parameters, experimental results on 16 datasets demonstrate that our method consistently outperforms state-of-the-art methods in few-shot learning, base-to-new generalization, and domain generalization.
DartControl: A Diffusion-Based Autoregressive Motion Model for Real-Time Text-Driven Motion Control
Text-conditioned human motion generation, which allows for user interaction through natural language, has become increasingly popular. Existing methods typically generate short, isolated motions based on a single input sentence. However, human motions are continuous and can extend over long periods, carrying rich semantics. Creating long, complex motions that precisely respond to streams of text descriptions, particularly in an online and real-time setting, remains a significant challenge. Furthermore, incorporating spatial constraints into text-conditioned motion generation presents additional challenges, as it requires aligning the motion semantics specified by text descriptions with geometric information, such as goal locations and 3D scene geometry. To address these limitations, we propose DartControl, in short DART, a Diffusion-based Autoregressive motion primitive model for Real-time Text-driven motion control. Our model effectively learns a compact motion primitive space jointly conditioned on motion history and text inputs using latent diffusion models. By autoregressively generating motion primitives based on the preceding history and current text input, DART enables real-time, sequential motion generation driven by natural language descriptions. Additionally, the learned motion primitive space allows for precise spatial motion control, which we formulate either as a latent noise optimization problem or as a Markov decision process addressed through reinforcement learning. We present effective algorithms for both approaches, demonstrating our model's versatility and superior performance in various motion synthesis tasks. Experiments show our method outperforms existing baselines in motion realism, efficiency, and controllability. Video results are available on the project page: https://zkf1997.github.io/DART/.
Iteratively Prompt Pre-trained Language Models for Chain of Thought
While Pre-trained Language Models (PLMs) internalize a great amount of world knowledge, they have been shown incapable of recalling these knowledge to solve tasks requiring complex & multi-step reasoning. Similar to how humans develop a "chain of thought" for these tasks, how can we equip PLMs with such abilities? In this work, we explore an iterative prompting framework, a new prompting paradigm which progressively elicits relevant knowledge from PLMs for multi-step inference. We identify key limitations of existing prompting methods, namely they are either restricted to queries with a single identifiable relation/predicate, or being agnostic to input contexts, which makes it difficult to capture variabilities across different inference steps. We propose an iterative context-aware prompter, which addresses these limitations by learning to dynamically synthesize prompts conditioned on the current step's contexts. Experiments on three datasets involving multi-step reasoning show the effectiveness of the iterative scheme and the context-aware prompter design.
StablePT: Towards Stable Prompting for Few-shot Learning via Input Separation
Large language models have shown their ability to become effective few-shot learners with prompting, revoluting the paradigm of learning with data scarcity. However, this approach largely depends on the quality of prompt initialization, and always exhibits large variability among different runs. Such property makes prompt tuning highly unreliable and vulnerable to poorly constructed prompts, which limits its extension to more real-world applications. To tackle this issue, we propose to treat the hard prompt and soft prompt as separate inputs to mitigate noise brought by the prompt initialization. Furthermore, we optimize soft prompts with contrastive learning for utilizing class-aware information in the training process to maintain model performance. Experimental results demonstrate that \sysname outperforms state-of-the-art methods by 7.20% in accuracy and reduces the standard deviation by 2.02 on average. Furthermore, extensive experiments underscore its robustness and stability across 7 datasets covering various tasks.
ControlVAR: Exploring Controllable Visual Autoregressive Modeling
Conditional visual generation has witnessed remarkable progress with the advent of diffusion models (DMs), especially in tasks like control-to-image generation. However, challenges such as expensive computational cost, high inference latency, and difficulties of integration with large language models (LLMs) have necessitated exploring alternatives to DMs. This paper introduces ControlVAR, a novel framework that explores pixel-level controls in visual autoregressive (VAR) modeling for flexible and efficient conditional generation. In contrast to traditional conditional models that learn the conditional distribution, ControlVAR jointly models the distribution of image and pixel-level conditions during training and imposes conditional controls during testing. To enhance the joint modeling, we adopt the next-scale AR prediction paradigm and unify control and image representations. A teacher-forcing guidance strategy is proposed to further facilitate controllable generation with joint modeling. Extensive experiments demonstrate the superior efficacy and flexibility of ControlVAR across various conditional generation tasks against popular conditional DMs, \eg, ControlNet and T2I-Adaptor. Code: https://github.com/lxa9867/ControlVAR.
PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling
Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework PRompt Optimization in Multi-Step Tasks (PROMST) that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6\%-29.3\% improvement to current best methods on five LLMs respectively). We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks. Datasets and Codes are available at https://github.com/yongchao98/PROMST. Project Page is available at https://yongchao98.github.io/MIT-REALM-PROMST.
PromptBridge: Cross-Model Prompt Transfer for Large Language Models
Large language models (LLMs) underpin applications in code generation, mathematical reasoning, and agent-based workflows. In practice, systems access LLMs via commercial APIs or open-source deployments, and the model landscape (e.g., GPT, Claude, Llama) evolves rapidly. This rapid evolution forces frequent model switches driven by capability, cost, deployment constraints, and privacy. Yet prompts are highly model-sensitive: reusing a prompt engineered for one model on another often yields substantially worse performance than a prompt optimized for the target model. We term this phenomenon Model Drifting. Through extensive empirical analysis across diverse LLM configurations, we show that model drifting is both common and severe. To address this challenge, we introduce PromptBridge, a training-free framework that preserves prompt effectiveness under model switches, enabling cross-model prompt transfer without costly per-task or per-model re-optimization. PromptBridge requires only a small set of alignment tasks for calibration. It first applies Model-Adaptive Reflective Prompt Evolution (MAP-RPE) to obtain task- and model-specific optimal prompts via iterative reflective refinement and quantitative evaluation. Using the resulting calibrated prompt pairs for the source and target models, PromptBridge learns a cross-model prompt mapping. At test time, i.e., for an unseen task, given a source-model prompt, this mapping directly produces an optimized prompt for the target model. Experiments in single-agent and multi-agent settings show that PromptBridge consistently improves downstream accuracy while reducing migration effort. The code will be available soon.
ChatGPT for Robotics: Design Principles and Model Abilities
This paper presents an experimental study regarding the use of OpenAI's ChatGPT for robotics applications. We outline a strategy that combines design principles for prompt engineering and the creation of a high-level function library which allows ChatGPT to adapt to different robotics tasks, simulators, and form factors. We focus our evaluations on the effectiveness of different prompt engineering techniques and dialog strategies towards the execution of various types of robotics tasks. We explore ChatGPT's ability to use free-form dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific prompting functions and closed-loop reasoning through dialogues. Our study encompasses a range of tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning all the way to complex domains such as aerial navigation, manipulation, and embodied agents. We show that ChatGPT can be effective at solving several of such tasks, while allowing users to interact with it primarily via natural language instructions. In addition to these studies, we introduce an open-sourced research tool called PromptCraft, which contains a platform where researchers can collaboratively upload and vote on examples of good prompting schemes for robotics applications, as well as a sample robotics simulator with ChatGPT integration, making it easier for users to get started with using ChatGPT for robotics.
AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot Manipulation
We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks, such as making a smiley face using building blocks. These tasks often involve complex multi-step reasoning, presenting significant challenges due to the limited paired data connecting human instructions (e.g., making a smiley face) and robot actions (e.g., end-effector movement). Existing approaches relieve this challenge by adopting an open-loop paradigm decomposing high-level instructions into simple sub-task plans, and executing them step-by-step using low-level control models. However, these approaches are short of instant observations in multi-step reasoning, leading to sub-optimal results. To address this issue, we propose to automatically collect a cognitive robot dataset by Large Language Models (LLMs). The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation sequences. To enable efficient data acquisition, we employ elaborated multi-round prompt designs that effectively reduce the burden of extensive human involvement. We further propose a closed-loop multi-modal embodied planning model that autoregressively generates plans by taking image observations as input. To facilitate effective learning, we leverage MiniGPT-4 with a frozen visual encoder and LLM, and finetune additional vision adapter and Q-former to enable fine-grained spatial perception for manipulation tasks. We conduct experiments to verify the superiority over existing open and closed-loop methods, and achieve a significant increase in success rate by 21.4% and 14.5% over ChatGPT and GPT-4 based robot tasks. Real-world demos are shown in https://www.youtube.com/watch?v=ayAzID1_qQk .
LangGPT: Rethinking Structured Reusable Prompt Design Framework for LLMs from the Programming Language
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to instruct LLMs proficiently poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. In addition, it is not conducive to the iterative updating of prompts. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the performance of LLMs. Moreover, the case study shows that LangGPT leads LLMs to generate higher-quality responses. Furthermore, we analyzed the ease of use and reusability of LangGPT through a user survey in our online community.
PromptSuite: A Task-Agnostic Framework for Multi-Prompt Generation
Evaluating LLMs with a single prompt has proven unreliable, with small changes leading to significant performance differences. However, generating the prompt variations needed for a more robust multi-prompt evaluation is challenging, limiting its adoption in practice. To address this, we introduce PromptSuite, a framework that enables the automatic generation of various prompts. PromptSuite is flexible - working out of the box on a wide range of tasks and benchmarks. It follows a modular prompt design, allowing controlled perturbations to each component, and is extensible, supporting the addition of new components and perturbation types. Through a series of case studies, we show that PromptSuite provides meaningful variations to support strong evaluation practices. It is available through both a Python API: https://github.com/eliyahabba/PromptSuite, and a user-friendly web interface: https://promptsuite.streamlit.app/
SSG-Dit: A Spatial Signal Guided Framework for Controllable Video Generation
Controllable video generation aims to synthesize video content that aligns precisely with user-provided conditions, such as text descriptions and initial images. However, a significant challenge persists in this domain: existing models often struggle to maintain strong semantic consistency, frequently generating videos that deviate from the nuanced details specified in the prompts. To address this issue, we propose SSG-DiT (Spatial Signal Guided Diffusion Transformer), a novel and efficient framework for high-fidelity controllable video generation. Our approach introduces a decoupled two-stage process. The first stage, Spatial Signal Prompting, generates a spatially aware visual prompt by leveraging the rich internal representations of a pre-trained multi-modal model. This prompt, combined with the original text, forms a joint condition that is then injected into a frozen video DiT backbone via our lightweight and parameter-efficient SSG-Adapter. This unique design, featuring a dual-branch attention mechanism, allows the model to simultaneously harness its powerful generative priors while being precisely steered by external spatial signals. Extensive experiments demonstrate that SSG-DiT achieves state-of-the-art performance, outperforming existing models on multiple key metrics in the VBench benchmark, particularly in spatial relationship control and overall consistency.
VIMA: General Robot Manipulation with Multimodal Prompts
Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. This work shows that we can express a wide spectrum of robot manipulation tasks with multimodal prompts, interleaving textual and visual tokens. We design a transformer-based generalist robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. To train and evaluate VIMA, we develop a new simulation benchmark with thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and four levels of evaluation protocol for systematic generalization. VIMA achieves strong scalability in both model capacity and data size. It outperforms prior SOTA methods in the hardest zero-shot generalization setting by up to 2.9times task success rate given the same training data. With 10times less training data, VIMA still performs 2.7times better than the top competing approach. We open-source all code, pretrained models, dataset, and simulation benchmark at https://vimalabs.github.io
Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs
Reasoning is a fundamental component for achieving language understanding. Among the multiple types of reasoning, conditional reasoning, the ability to draw different conclusions depending on some condition, has been understudied in large language models (LLMs). Recent prompting methods, such as chain of thought, have significantly improved LLMs on reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs. We hypothesize that code prompts can trigger conditional reasoning in LLMs trained on text and code. We propose a chain of prompts that transforms a natural language problem into code and prompts the LLM with the generated code. Our experiments find that code prompts exhibit a performance boost between 2.6 and 7.7 points on GPT 3.5 across multiple datasets requiring conditional reasoning. We then conduct experiments to discover how code prompts elicit conditional reasoning abilities and through which features. We observe that prompts need to contain natural language text accompanied by high-quality code that closely represents the semantics of the instance text. Furthermore, we show that code prompts are more efficient, requiring fewer demonstrations, and that they trigger superior state tracking of variables or key entities.
ConsPrompt: Easily Exploiting Contrastive Samples for Few-shot Prompt Learning
Prompt learning recently become an effective linguistic tool to motivate the PLMs' knowledge on few-shot-setting tasks. However, studies have shown the lack of robustness still exists in prompt learning, since suitable initialization of continuous prompt and expert-first manual prompt are essential in fine-tuning process. What is more, human also utilize their comparative ability to motivate their existing knowledge for distinguishing different examples. Motivated by this, we explore how to use contrastive samples to strengthen prompt learning. In detail, we first propose our model ConsPrompt combining with prompt encoding network, contrastive sampling module, and contrastive scoring module. Subsequently, two sampling strategies, similarity-based and label-based strategies, are introduced to realize differential contrastive learning. The effectiveness of proposed ConsPrompt is demonstrated in five different few-shot learning tasks and shown the similarity-based sampling strategy is more effective than label-based in combining contrastive learning. Our results also exhibits the state-of-the-art performance and robustness in different few-shot settings, which proves that the ConsPrompt could be assumed as a better knowledge probe to motivate PLMs.
Automatic Prompt Selection for Large Language Models
Large Language Models (LLMs) can perform various natural language processing tasks with suitable instruction prompts. However, designing effective prompts manually is challenging and time-consuming. Existing methods for automatic prompt optimization either lack flexibility or efficiency. In this paper, we propose an effective approach to automatically select the optimal prompt for a given input from a finite set of synthetic candidate prompts. Our approach consists of three steps: (1) clustering the training data and generating candidate prompts for each cluster using an LLM-based prompt generator; (2) synthesizing a dataset of input-prompt-output tuples for training a prompt evaluator to rank the prompts based on their relevance to the input; (3) using the prompt evaluator to select the best prompt for a new input at test time. Our approach balances prompt generality-specificity and eliminates the need for resource-intensive training and inference. It demonstrates competitive performance on zero-shot question-answering datasets: GSM8K, MultiArith, and AQuA.
Automatic Prompt Optimization with "Gradient Descent" and Beam Search
Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Automatic Prompt Optimization (APO), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language ``gradients'' that criticize the current prompt. The gradients are then ``propagated'' into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt's performance by up to 31\%, by using data to rewrite vague task descriptions into more precise annotation instructions.
IPO: Interpretable Prompt Optimization for Vision-Language Models
Pre-trained vision-language models like CLIP have remarkably adapted to various downstream tasks. Nonetheless, their performance heavily depends on the specificity of the input text prompts, which requires skillful prompt template engineering. Instead, current approaches to prompt optimization learn the prompts through gradient descent, where the prompts are treated as adjustable parameters. However, these methods tend to lead to overfitting of the base classes seen during training and produce prompts that are no longer understandable by humans. This paper introduces a simple but interpretable prompt optimizer (IPO), that utilizes large language models (LLMs) to generate textual prompts dynamically. We introduce a Prompt Optimization Prompt that not only guides LLMs in creating effective prompts but also stores past prompts with their performance metrics, providing rich in-context information. Additionally, we incorporate a large multimodal model (LMM) to condition on visual content by generating image descriptions, which enhance the interaction between textual and visual modalities. This allows for thae creation of dataset-specific prompts that improve generalization performance, while maintaining human comprehension. Extensive testing across 11 datasets reveals that IPO not only improves the accuracy of existing gradient-descent-based prompt learning methods but also considerably enhances the interpretability of the generated prompts. By leveraging the strengths of LLMs, our approach ensures that the prompts remain human-understandable, thereby facilitating better transparency and oversight for vision-language models.
Contrastive Demonstration Tuning for Pre-trained Language Models
Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged into any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in https://github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.
The Prompt Report: A Systematic Survey of Prompting Techniques
Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
Sketch Then Generate: Providing Incremental User Feedback and Guiding LLM Code Generation through Language-Oriented Code Sketches
Crafting effective prompts for code generation or editing with Large Language Models (LLMs) is not an easy task. Particularly, the absence of immediate, stable feedback during prompt crafting hinders effective interaction, as users are left to mentally imagine possible outcomes until the code is generated. In response, we introduce Language-Oriented Code Sketching, an interactive approach that provides instant, incremental feedback in the form of code sketches (i.e., incomplete code outlines) during prompt crafting. This approach converts a prompt into a code sketch by leveraging the inherent linguistic structures within the prompt and applying classic natural language processing techniques. The sketch then serves as an intermediate placeholder that not only previews the intended code structure but also guides the LLM towards the desired code, thereby enhancing human-LLM interaction. We conclude by discussing the approach's applicability and future plans.
Has My System Prompt Been Used? Large Language Model Prompt Membership Inference
Prompt engineering has emerged as a powerful technique for optimizing large language models (LLMs) for specific applications, enabling faster prototyping and improved performance, and giving rise to the interest of the community in protecting proprietary system prompts. In this work, we explore a novel perspective on prompt privacy through the lens of membership inference. We develop Prompt Detective, a statistical method to reliably determine whether a given system prompt was used by a third-party language model. Our approach relies on a statistical test comparing the distributions of two groups of model outputs corresponding to different system prompts. Through extensive experiments with a variety of language models, we demonstrate the effectiveness of Prompt Detective for prompt membership inference. Our work reveals that even minor changes in system prompts manifest in distinct response distributions, enabling us to verify prompt usage with statistical significance.
GREATERPROMPT: A Unified, Customizable, and High-Performing Open-Source Toolkit for Prompt Optimization
LLMs have gained immense popularity among researchers and the general public for its impressive capabilities on a variety of tasks. Notably, the efficacy of LLMs remains significantly dependent on the quality and structure of the input prompts, making prompt design a critical factor for their performance. Recent advancements in automated prompt optimization have introduced diverse techniques that automatically enhance prompts to better align model outputs with user expectations. However, these methods often suffer from the lack of standardization and compatibility across different techniques, limited flexibility in customization, inconsistent performance across model scales, and they often exclusively rely on expensive proprietary LLM APIs. To fill in this gap, we introduce GREATERPROMPT, a novel framework that democratizes prompt optimization by unifying diverse methods under a unified, customizable API while delivering highly effective prompts for different tasks. Our framework flexibly accommodates various model scales by leveraging both text feedback-based optimization for larger LLMs and internal gradient-based optimization for smaller models to achieve powerful and precise prompt improvements. Moreover, we provide a user-friendly Web UI that ensures accessibility for non-expert users, enabling broader adoption and enhanced performance across various user groups and application scenarios. GREATERPROMPT is available at https://github.com/psunlpgroup/GreaterPrompt via GitHub, PyPI, and web user interfaces.
X-Prompt: Towards Universal In-Context Image Generation in Auto-Regressive Vision Language Foundation Models
In-context generation is a key component of large language models' (LLMs) open-task generalization capability. By leveraging a few examples as context, LLMs can perform both in-domain and out-of-domain tasks. Recent advancements in auto-regressive vision-language models (VLMs) built upon LLMs have showcased impressive performance in text-to-image generation. However, the potential of in-context learning for general image generation tasks remains largely unexplored. To address this, we introduce X-Prompt, a purely auto-regressive large-vision language model designed to deliver competitive performance across a wide range of both seen and unseen image generation tasks, all within a unified in-context learning framework. X-Prompt incorporates a specialized design that efficiently compresses valuable features from in-context examples, supporting longer in-context token sequences and improving its ability to generalize to unseen tasks. A unified training task for both text and image prediction enables X-Prompt to handle general image generation with enhanced task awareness from in-context examples. Extensive experiments validate the model's performance across diverse seen image generation tasks and its capacity to generalize to previously unseen tasks.
ChatGPT Empowered Long-Step Robot Control in Various Environments: A Case Application
This paper demonstrates how OpenAI's ChatGPT can be used in a few-shot setting to convert natural language instructions into a sequence of executable robot actions. The paper proposes easy-to-customize input prompts for ChatGPT that meet common requirements in practical applications, such as easy integration with robot execution systems and applicability to various environments while minimizing the impact of ChatGPT's token limit. The prompts encourage ChatGPT to output a sequence of predefined robot actions, represent the operating environment in a formalized style, and infer the updated state of the operating environment. Experiments confirmed that the proposed prompts enable ChatGPT to act according to requirements in various environments, and users can adjust ChatGPT's output with natural language feedback for safe and robust operation. The proposed prompts and source code are open-source and publicly available at https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts
Code-Driven Planning in Grid Worlds with Large Language Models
We propose an iterative programmatic planning (IPP) framework for solving grid-based tasks by synthesizing interpretable agent policies expressed in code using large language models (LLMs). Instead of relying on traditional search or reinforcement learning, our approach uses code generation as policy synthesis, where the LLM outputs executable programs that map environment states to action sequences. Our proposed architecture incorporates several prompting strategies, including direct code generation, pseudocode-conditioned refinement, and curriculum-based prompting, but also includes an iterative refinement mechanism that updates code based on task performance feedback. We evaluate our approach using six leading LLMs and two challenging grid-based benchmarks (GRASP and MiniGrid). Our IPP framework demonstrates improvements over direct code generation ranging from 10\% to as much as 10x across five of the six models and establishes a new state-of-the-art result for GRASP. IPP is found to significantly outperform direct elicitation of a solution from GPT-o3-mini (by 63\% on MiniGrid to 116\% on GRASP), demonstrating the viability of the overall approach. Computational costs of all code generation approaches are similar. While code generation has a higher initial prompting cost compared to direct solution elicitation (\0.08 per task vs. 0.002 per instance for GPT-o3-mini), the code can be reused for any number of instances, making the amortized cost significantly lower (by 400x on GPT-o3-mini across the complete GRASP benchmark).
