Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLoongTrain: Efficient Training of Long-Sequence LLMs with Head-Context Parallelism
Efficiently training LLMs with long sequences is important yet challenged by the massive computation and memory requirements. Sequence parallelism has been proposed to tackle these problems, but existing methods suffer from scalability or efficiency issues. We propose LoongTrain, a novel system to efficiently train LLMs with long sequences at scale. The core of LoongTrain is the 2D-Attention mechanism, which combines both head-parallel and context-parallel techniques to break the scalability constraints while maintaining efficiency. We introduce Double-Ring-Attention and analyze the performance of device placement strategies to further speed up training. We implement LoongTrain with the hybrid ZeRO and Selective Checkpoint++ techniques. Experiment results show that LoongTrain outperforms state-of-the-art baselines, i.e., DeepSpeed-Ulysses and Megatron Context Parallelism, in both end-to-end training speed and scalability, and improves Model FLOPs Utilization (MFU) by up to 2.88x.
SPADE: Enhancing Adaptive Cyber Deception Strategies with Generative AI and Structured Prompt Engineering
The rapid evolution of modern malware presents significant challenges to the development of effective defense mechanisms. Traditional cyber deception techniques often rely on static or manually configured parameters, limiting their adaptability to dynamic and sophisticated threats. This study leverages Generative AI (GenAI) models to automate the creation of adaptive cyber deception ploys, focusing on structured prompt engineering (PE) to enhance relevance, actionability, and deployability. We introduce a systematic framework (SPADE) to address inherent challenges large language models (LLMs) pose to adaptive deceptions, including generalized outputs, ambiguity, under-utilization of contextual information, and scalability constraints. Evaluations across diverse malware scenarios using metrics such as Recall, Exact Match (EM), BLEU Score, and expert quality assessments identified ChatGPT-4o as the top performer. Additionally, it achieved high engagement (93%) and accuracy (96%) with minimal refinements. Gemini and ChatGPT-4o Mini demonstrated competitive performance, with Llama3.2 showing promise despite requiring further optimization. These findings highlight the transformative potential of GenAI in automating scalable, adaptive deception strategies and underscore the critical role of structured PE in advancing real-world cybersecurity applications.
SWAN: SGD with Normalization and Whitening Enables Stateless LLM Training
Adaptive optimizers such as Adam (Kingma & Ba, 2015) have been central to the success of large language models. However, they often require to maintain optimizer states throughout training, which can result in memory requirements several times greater than the model footprint. This overhead imposes constraints on scalability and computational efficiency. Stochastic Gradient Descent (SGD), in contrast, is a stateless optimizer, as it does not track state variables during training. Consequently, it achieves optimal memory efficiency. However, its capability in LLM training is limited (Zhao et al., 2024b). In this work, we show that pre-processing SGD in a stateless manner can achieve the same performance as the Adam optimizer for LLM training, while drastically reducing the memory cost. Specifically, we propose to pre-process the instantaneous stochastic gradients using normalization and whitening. We show that normalization stabilizes gradient distributions, and whitening counteracts the local curvature of the loss landscape. This results in SWAN (SGD with Whitening And Normalization), a stochastic optimizer that eliminates the need to store any optimizer states. Empirically, SWAN has the same memory footprint as SGD, achieving approx 50% reduction on total end-to-end memory compared to Adam. In language modeling tasks, SWAN demonstrates comparable or even better performance than Adam: when pre-training the LLaMA model with 350M and 1.3B parameters, SWAN achieves a 2x speedup by reaching the same evaluation perplexity using half as many tokens.
Superpositional Gradient Descent: Harnessing Quantum Principles for Model Training
Large language models (LLMs) are increasingly trained with classical optimization techniques like AdamW to improve convergence and generalization. However, the mechanisms by which quantum-inspired methods enhance classical training remain underexplored. We introduce Superpositional Gradient Descent (SGD), a novel optimizer linking gradient updates with quantum superposition by injecting quantum circuit perturbations. We present a mathematical framework and implement hybrid quantum-classical circuits in PyTorch and Qiskit. On synthetic sequence classification and large-scale LLM fine-tuning, SGD converges faster and yields lower final loss than AdamW. Despite promising results, scalability and hardware constraints limit adoption. Overall, this work provides new insights into the intersection of quantum computing and deep learning, suggesting practical pathways for leveraging quantum principles to control and enhance model behavior.
Leveraging Cloud-Fog Automation for Autonomous Collision Detection and Classification in Intelligent Unmanned Surface Vehicles
Industrial Cyber-Physical Systems (ICPS) technologies are foundational in driving maritime autonomy, particularly for Unmanned Surface Vehicles (USVs). However, onboard computational constraints and communication latency significantly restrict real-time data processing, analysis, and predictive modeling, hence limiting the scalability and responsiveness of maritime ICPS. To overcome these challenges, we propose a distributed Cloud-Edge-IoT architecture tailored for maritime ICPS by leveraging design principles from the recently proposed Cloud-Fog Automation paradigm. Our proposed architecture comprises three hierarchical layers: a Cloud Layer for centralized and decentralized data aggregation, advanced analytics, and future model refinement; an Edge Layer that executes localized AI-driven processing and decision-making; and an IoT Layer responsible for low-latency sensor data acquisition. Our experimental results demonstrated improvements in computational efficiency, responsiveness, and scalability. When compared with our conventional approaches, we achieved a classification accuracy of 86\%, with an improved latency performance. By adopting Cloud-Fog Automation, we address the low-latency processing constraints and scalability challenges in maritime ICPS applications. Our work offers a practical, modular, and scalable framework to advance robust autonomy and AI-driven decision-making and autonomy for intelligent USVs in future maritime ICPS.
Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 times 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .
FairGBM: Gradient Boosting with Fairness Constraints
Tabular data is prevalent in many high-stakes domains, such as financial services or public policy. Gradient Boosted Decision Trees (GBDT) are popular in these settings due to their scalability, performance, and low training cost. While fairness in these domains is a foremost concern, existing in-processing Fair ML methods are either incompatible with GBDT, or incur in significant performance losses while taking considerably longer to train. We present FairGBM, a dual ascent learning framework for training GBDT under fairness constraints, with little to no impact on predictive performance when compared to unconstrained GBDT. Since observational fairness metrics are non-differentiable, we propose smooth convex error rate proxies for common fairness criteria, enabling gradient-based optimization using a ``proxy-Lagrangian'' formulation. Our implementation shows an order of magnitude speedup in training time relative to related work, a pivotal aspect to foster the widespread adoption of FairGBM by real-world practitioners.
Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient
Mixture of Experts (MoE) architectures have significantly increased computational efficiency in both research and real-world applications of large-scale machine learning models. However, their scalability and efficiency under memory constraints remain relatively underexplored. In this work, we present joint scaling laws for dense and MoE models, incorporating key factors such as the number of active parameters, dataset size, and the number of experts. Our findings provide a principled framework for selecting the optimal MoE configuration under fixed memory and compute budgets. Surprisingly, we show that MoE models can be more memory-efficient than dense models, contradicting conventional wisdom. To derive and validate the theoretical predictions of our scaling laws, we conduct over 280 experiments with up to 2.7B active parameters and up to 5B total parameters. These results offer actionable insights for designing and deploying MoE models in practical large-scale training scenarios.
MoEC: Mixture of Expert Clusters
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead. MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated. However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation. Such problems are especially severe on tasks with limited data, thus hindering the progress for MoE models to improve performance by scaling up. In this work, we propose Mixture of Expert Clusters - a general approach to enable expert layers to learn more diverse and appropriate knowledge by imposing variance-based constraints on the routing stage. We further propose a cluster-level expert dropout strategy specifically designed for the expert cluster structure. Our experiments reveal that MoEC could improve performance on machine translation and natural language understanding tasks, and raise the performance upper bound for scaling up experts under limited data. We also verify that MoEC plays a positive role in mitigating overfitting and sparse data allocation.
Learning Certified Individually Fair Representations
Fair representation learning provides an effective way of enforcing fairness constraints without compromising utility for downstream users. A desirable family of such fairness constraints, each requiring similar treatment for similar individuals, is known as individual fairness. In this work, we introduce the first method that enables data consumers to obtain certificates of individual fairness for existing and new data points. The key idea is to map similar individuals to close latent representations and leverage this latent proximity to certify individual fairness. That is, our method enables the data producer to learn and certify a representation where for a data point all similar individuals are at ell_infty-distance at most epsilon, thus allowing data consumers to certify individual fairness by proving epsilon-robustness of their classifier. Our experimental evaluation on five real-world datasets and several fairness constraints demonstrates the expressivity and scalability of our approach.
Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
Tensor Product Attention Is All You Need
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, significantly shrinking KV cache size at inference time. By factorizing these representations into contextual low-rank components (contextual factorization) and seamlessly integrating with RoPE, TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation of language modeling tasks, we demonstrate that T6 exceeds the performance of standard Transformer baselines including MHA, MQA, GQA, and MLA across various metrics, including perplexity and a range of renowned evaluation benchmarks. Notably, TPAs memory efficiency enables the processing of significantly longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
Forward Learning of Graph Neural Networks
Graph neural networks (GNNs) have achieved remarkable success across a wide range of applications, such as recommendation, drug discovery, and question answering. Behind the success of GNNs lies the backpropagation (BP) algorithm, which is the de facto standard for training deep neural networks (NNs). However, despite its effectiveness, BP imposes several constraints, which are not only biologically implausible, but also limit the scalability, parallelism, and flexibility in learning NNs. Examples of such constraints include storage of neural activities computed in the forward pass for use in the subsequent backward pass, and the dependence of parameter updates on non-local signals. To address these limitations, the forward-forward algorithm (FF) was recently proposed as an alternative to BP in the image classification domain, which trains NNs by performing two forward passes over positive and negative data. Inspired by this advance, we propose ForwardGNN in this work, a new forward learning procedure for GNNs, which avoids the constraints imposed by BP via an effective layer-wise local forward training. ForwardGNN extends the original FF to deal with graph data and GNNs, and makes it possible to operate without generating negative inputs (hence no longer forward-forward). Further, ForwardGNN enables each layer to learn from both the bottom-up and top-down signals without relying on the backpropagation of errors. Extensive experiments on real-world datasets show the effectiveness and generality of the proposed forward graph learning framework. We release our code at https://github.com/facebookresearch/forwardgnn.
Autonomous Driving with Spiking Neural Networks
Autonomous driving demands an integrated approach that encompasses perception, prediction, and planning, all while operating under strict energy constraints to enhance scalability and environmental sustainability. We present Spiking Autonomous Driving (SAD), the first unified Spiking Neural Network (SNN) to address the energy challenges faced by autonomous driving systems through its event-driven and energy-efficient nature. SAD is trained end-to-end and consists of three main modules: perception, which processes inputs from multi-view cameras to construct a spatiotemporal bird's eye view; prediction, which utilizes a novel dual-pathway with spiking neurons to forecast future states; and planning, which generates safe trajectories considering predicted occupancy, traffic rules, and ride comfort. Evaluated on the nuScenes dataset, SAD achieves competitive performance in perception, prediction, and planning tasks, while drawing upon the energy efficiency of SNNs. This work highlights the potential of neuromorphic computing to be applied to energy-efficient autonomous driving, a critical step toward sustainable and safety-critical automotive technology. Our code is available at https://github.com/ridgerchu/SAD.
Representation Learning with Large Language Models for Recommendation
Recommender systems have seen significant advancements with the influence of deep learning and graph neural networks, particularly in capturing complex user-item relationships. However, these graph-based recommenders heavily depend on ID-based data, potentially disregarding valuable textual information associated with users and items, resulting in less informative learned representations. Moreover, the utilization of implicit feedback data introduces potential noise and bias, posing challenges for the effectiveness of user preference learning. While the integration of large language models (LLMs) into traditional ID-based recommenders has gained attention, challenges such as scalability issues, limitations in text-only reliance, and prompt input constraints need to be addressed for effective implementation in practical recommender systems. To address these challenges, we propose a model-agnostic framework RLMRec that aims to enhance existing recommenders with LLM-empowered representation learning. It proposes a recommendation paradigm that integrates representation learning with LLMs to capture intricate semantic aspects of user behaviors and preferences. RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework. This work further establish a theoretical foundation demonstrating that incorporating textual signals through mutual information maximization enhances the quality of representations. In our evaluation, we integrate RLMRec with state-of-the-art recommender models, while also analyzing its efficiency and robustness to noise data. Our implementation codes are available at https://github.com/HKUDS/RLMRec.
HLLM-Creator: Hierarchical LLM-based Personalized Creative Generation
AI-generated content technologies are widely used in content creation. However, current AIGC systems rely heavily on creators' inspiration, rarely generating truly user-personalized content. In real-world applications such as online advertising, a single product may have multiple selling points, with different users focusing on different features. This underscores the significant value of personalized, user-centric creative generation. Effective personalized content generation faces two main challenges: (1) accurately modeling user interests and integrating them into the content generation process while adhering to factual constraints, and (2) ensuring high efficiency and scalability to handle the massive user base in industrial scenarios. Additionally, the scarcity of personalized creative data in practice complicates model training, making data construction another key hurdle. We propose HLLM-Creator, a hierarchical LLM framework for efficient user interest modeling and personalized content generation. During inference, a combination of user clustering and a user-ad-matching-prediction based pruning strategy is employed to significantly enhance generation efficiency and reduce computational overhead, making the approach suitable for large-scale deployment. Moreover, we design a data construction pipeline based on chain-of-thought reasoning, which generates high-quality, user-specific creative titles and ensures factual consistency despite limited personalized data. This pipeline serves as a critical foundation for the effectiveness of our model. Extensive experiments on personalized title generation for Douyin Search Ads show the effectiveness of HLLM-Creator. Online A/B test shows a 0.476% increase on Adss, paving the way for more effective and efficient personalized generation in industrial scenarios. Codes for academic dataset are available at https://github.com/bytedance/HLLM.
TableRAG: Million-Token Table Understanding with Language Models
Recent advancements in language models (LMs) have notably enhanced their ability to reason with tabular data, primarily through program-aided mechanisms that manipulate and analyze tables. However, these methods often require the entire table as input, leading to scalability challenges due to the positional bias or context length constraints. In response to these challenges, we introduce TableRAG, a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding. TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs. This enables more efficient data encoding and precise retrieval, significantly reducing prompt lengths and mitigating information loss. We have developed two new million-token benchmarks from the Arcade and BIRD-SQL datasets to thoroughly evaluate TableRAG's effectiveness at scale. Our results demonstrate that TableRAG's retrieval design achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
DeepSpeed-VisualChat: Multi-Round Multi-Image Interleave Chat via Multi-Modal Causal Attention
Most of the existing multi-modal models, hindered by their incapacity to adeptly manage interleaved image-and-text inputs in multi-image, multi-round dialogues, face substantial constraints in resource allocation for training and data accessibility, impacting their adaptability and scalability across varied interaction realms. To address this, we present the DeepSpeed-VisualChat framework, designed to optimize Large Language Models (LLMs) by incorporating multi-modal capabilities, with a focus on enhancing the proficiency of Large Vision and Language Models in handling interleaved inputs. Our framework is notable for (1) its open-source support for multi-round and multi-image dialogues, (2) introducing an innovative multi-modal causal attention mechanism, and (3) utilizing data blending techniques on existing datasets to assure seamless interactions in multi-round, multi-image conversations. Compared to existing frameworks, DeepSpeed-VisualChat shows superior scalability up to 70B parameter language model size, representing a significant advancement in multi-modal language models and setting a solid foundation for future explorations.
Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
Efficient Reinforcement Learning for Global Decision Making in the Presence of Local Agents at Scale
We study reinforcement learning for global decision-making in the presence of many local agents, where the global decision-maker makes decisions affecting all local agents, and the objective is to learn a policy that maximizes the rewards of both the global and the local agents. Such problems find many applications, e.g. demand response, EV charging, queueing, etc. In this setting, scalability has been a long-standing challenge due to the size of the state/action space which can be exponential in the number of agents. This work proposes the SUB-SAMPLE-Q algorithm where the global agent subsamples kleq n local agents to compute an optimal policy in time that is only exponential in k, providing an exponential speedup from standard methods that are exponential in n. We show that the learned policy converges to the optimal policy in the order of O(1/k+epsilon_{k,m}) as the number of sub-sampled agents k increases, where epsilon_{k,m} is the Bellman noise. We also conduct numerical simulations in a demand-response setting and a queueing setting.
ElasticMoE: An Efficient Auto Scaling Method for Mixture-of-Experts Models
Mixture-of-Experts (MoE) models promise efficient scaling of large language models (LLMs) by activating only a small subset of experts per token, but their parallelized inference pipelines make elastic serving challenging. Existing strategies fall short: horizontal scaling provisions entire replicas of the current configuration, often tens to hundreds of accelerators, leading to coarse granularity, long provisioning delays, and costly overprovisioning. Vertical scaling offers finer adjustments but typically requires instance restarts, incurring downtime. These limitations make current approaches ill-suited for the bursty, short-lived traffic patterns common in cloud deployments. We present ElasticMoE, an elastic scaling framework for MoE LLMs that achieves fine-grained, low-latency, and zero-downtime scaling. ElasticMoE decouples inference execution from memory operations, enabling scaling steps to proceed concurrently with serving. An HBM Management Module (HMM) reuses weights and KV caches via zero-copy remapping, while high-bandwidth peer-to-peer transfers bring newly added accelerators online without interrupting service. A virtual memory based expert redistribution mechanism migrates MoE experts without costly buffer reallocations, reducing peak memory usage during expert parallelism reconfiguration. Our evaluation on Ascend NPUs with three popular MoE LLMs shows that ElasticMoE achieves up to 9x lower scale-up latency, up to 2x better throughput during scaling, and significantly improves SLO attainment compared to baselines. By enabling fine-grained, concurrent scaling with minimal disruption, ElasticMoE advances the practicality of deploying massive MoE LLMs in dynamic cloud environments.
Scalable Fingerprinting of Large Language Models
Model fingerprinting has emerged as a powerful tool for model owners to identify their shared model given API access. However, to lower false discovery rate, fight fingerprint leakage, and defend against coalitions of model users attempting to bypass detection, we argue that {\em scalability} is critical, i.e., scaling up the number of fingerprints one can embed into a model. Hence, we pose scalability as a crucial requirement for fingerprinting schemes. We experiment with fingerprint design at a scale significantly larger than previously considered, and introduce a new method, dubbed Perinucleus sampling, to generate scalable, persistent, and harmless fingerprints. We demonstrate that this scheme can add 24,576 fingerprints to a Llama-3.1-8B model -- two orders of magnitude more than existing schemes -- without degrading the model's utility. Our inserted fingerprints persist even after supervised fine-tuning on standard post-training data. We further address security risks for fingerprinting, and theoretically and empirically show how a scalable fingerprinting scheme like ours can mitigate these risks.
Scaling over Scaling: Exploring Test-Time Scaling Pareto in Large Reasoning Models
Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling. Building upon this, a promising direction is to further scale test-time compute to unlock even greater reasoning capabilities. However, as we push these scaling boundaries, systematically understanding the practical limits and achieving optimal resource allocation becomes a critical challenge. In this paper, we investigate the scaling Pareto of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM). We theoretically analyze two fundamental paradigms for such extended scaling, parallel scaling and sequential scaling, from a probabilistic modeling perspective. Our primary contribution is the derivation of the saturation point on the scaling budget for both strategies, identifying thresholds beyond which additional computation yields diminishing returns. Remarkably, despite their distinct mechanisms, both paradigms converge to a unified mathematical structure in their upper bounds. We empirically validate our theoretical findings on challenging reasoning benchmarks, including AIME, MATH-500, and GPQA, demonstrating the practical utility of these bounds for test-time resource allocation. We hope that this work provides insights into the cost-benefit trade-offs of test-time scaling, guiding the development of more resource-efficient inference strategies for large reasoning models.
Unified Scaling Laws for Routed Language Models
The performance of a language model has been shown to be effectively modeled as a power-law in its parameter count. Here we study the scaling behaviors of Routing Networks: architectures that conditionally use only a subset of their parameters while processing an input. For these models, parameter count and computational requirement form two independent axes along which an increase leads to better performance. In this work we derive and justify scaling laws defined on these two variables which generalize those known for standard language models and describe the performance of a wide range of routing architectures trained via three different techniques. Afterwards we provide two applications of these laws: first deriving an Effective Parameter Count along which all models scale at the same rate, and then using the scaling coefficients to give a quantitative comparison of the three routing techniques considered. Our analysis derives from an extensive evaluation of Routing Networks across five orders of magnitude of size, including models with hundreds of experts and hundreds of billions of parameters.
GraphFM: A Comprehensive Benchmark for Graph Foundation Model
Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
Scaling Data-Constrained Language Models
The current trend of scaling language models involves increasing both parameter count and training dataset size. Extrapolating this trend suggests that training dataset size may soon be limited by the amount of text data available on the internet. Motivated by this limit, we investigate scaling language models in data-constrained regimes. Specifically, we run a large set of experiments varying the extent of data repetition and compute budget, ranging up to 900 billion training tokens and 9 billion parameter models. We find that with constrained data for a fixed compute budget, training with up to 4 epochs of repeated data yields negligible changes to loss compared to having unique data. However, with more repetition, the value of adding compute eventually decays to zero. We propose and empirically validate a scaling law for compute optimality that accounts for the decreasing value of repeated tokens and excess parameters. Finally, we experiment with approaches mitigating data scarcity, including augmenting the training dataset with code data or removing commonly used filters. Models and datasets from our 400 training runs are publicly available at https://github.com/huggingface/datablations.
SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications, where the efficiency of model serving is crucial for the user experience. Most current research focuses on optimizing individual sub-procedures, e.g. local inference and communication, however, there is no comprehensive framework that provides a holistic system view for optimizing LLM serving in an end-to-end manner. In this work, we conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems. Our analysis reveals that a comprehensive LLM serving endpoint must address a series of efficiency bottlenecks that extend beyond LLM inference. We then propose ScaleLLM, an optimized system for resource-efficient LLM serving. Our extensive experiments reveal that with 64 concurrent requests, ScaleLLM achieves a 4.3x speed up over vLLM and outperforms state-of-the-arts with 1.5x higher throughput.
Agentar-Scale-SQL: Advancing Text-to-SQL through Orchestrated Test-Time Scaling
State-of-the-art (SOTA) Text-to-SQL methods still lag significantly behind human experts on challenging benchmarks like BIRD. Current approaches that explore test-time scaling lack an orchestrated strategy and neglect the model's internal reasoning process. To bridge this gap, we introduce Agentar-Scale-SQL, a novel framework leveraging scalable computation to improve performance. Agentar-Scale-SQL implements an Orchestrated Test-Time Scaling strategy that synergistically combines three distinct perspectives: i) Internal Scaling via RL-enhanced Intrinsic Reasoning, ii) Sequential Scaling through Iterative Refinement, and iii) Parallel Scaling using Diverse Synthesis and Tournament Selection. Agentar-Scale-SQL is a general-purpose framework designed for easy adaptation to new databases and more powerful language models. Extensive experiments show that Agentar-Scale-SQL achieves SOTA performance on the BIRD benchmark, reaching 81.67% execution accuracy on the test set and ranking first on the official leaderboard, demonstrating an effective path toward human-level performance.
RouterBench: A Benchmark for Multi-LLM Routing System
As the range of applications for Large Language Models (LLMs) continues to grow, the demand for effective serving solutions becomes increasingly critical. Despite the versatility of LLMs, no single model can optimally address all tasks and applications, particularly when balancing performance with cost. This limitation has led to the development of LLM routing systems, which combine the strengths of various models to overcome the constraints of individual LLMs. Yet, the absence of a standardized benchmark for evaluating the performance of LLM routers hinders progress in this area. To bridge this gap, we present RouterBench, a novel evaluation framework designed to systematically assess the efficacy of LLM routing systems, along with a comprehensive dataset comprising over 405k inference outcomes from representative LLMs to support the development of routing strategies. We further propose a theoretical framework for LLM routing, and deliver a comparative analysis of various routing approaches through RouterBench, highlighting their potentials and limitations within our evaluation framework. This work not only formalizes and advances the development of LLM routing systems but also sets a standard for their assessment, paving the way for more accessible and economically viable LLM deployments. The code and data are available at https://github.com/withmartian/routerbench.
R-ConstraintBench: Evaluating LLMs on NP-Complete Scheduling
Effective scheduling under tight resource, timing, and operational constraints underpins large-scale planning across sectors such as capital projects, manufacturing, logistics, and IT fleet transitions. However, the reliability of large language models (LLMs) when reasoning under high-constraint regimes is insufficiently characterized. To address this gap, we present R-ConstraintBench, a scalable framework that evaluates models on Resource-Constrained Project Scheduling Problems (RCPSP), an NP-Complete feasibility class, while difficulty increases via linear growth in constraints. R-ConstraintBench incrementally increases non-redundant precedence constraints in Directed Acyclic Graphs (DAGs) and then introduces downtime, temporal windows, and disjunctive constraints. As an illustrative example, we instantiate the benchmark in a data center migration setting and evaluate multiple LLMs using feasibility and error analysis, identifying degradation thresholds and constraint types most associated with failure. Empirically, strong models are near-ceiling on precedence-only DAGs, but feasibility performance collapses when downtime, temporal windows, and disjunctive constraints interact, implicating constraint interaction, not graph depth, as the principal bottleneck. Performance on clean synthetic ramps also does not guarantee transfer to domain-grounded scenarios, underscoring limited generalization.
Taming the Chaos: Coordinated Autoscaling for Heterogeneous and Disaggregated LLM Inference
Serving Large Language Models (LLMs) is a GPU-intensive task where traditional autoscalers fall short, particularly for modern Prefill-Decode (P/D) disaggregated architectures. This architectural shift, while powerful, introduces significant operational challenges, including inefficient use of heterogeneous hardware, network bottlenecks, and critical imbalances between prefill and decode stages. We introduce HeteroScale, a coordinated autoscaling framework that addresses the core challenges of P/D disaggregated serving. HeteroScale combines a topology-aware scheduler that adapts to heterogeneous hardware and network constraints with a novel metric-driven policy derived from the first large-scale empirical study of autoscaling signals in production. By leveraging a single, robust metric to jointly scale prefill and decode pools, HeteroScale maintains architectural balance while ensuring efficient, adaptive resource management. Deployed in a massive production environment on tens of thousands of GPUs, HeteroScale has proven its effectiveness, increasing average GPU utilization by a significant 26.6 percentage points and saving hundreds of thousands of GPU-hours daily, all while upholding stringent service level objectives.
Is the Number of Trainable Parameters All That Actually Matters?
Recent work has identified simple empirical scaling laws for language models, linking compute budget, dataset size, model size, and autoregressive modeling loss. The validity of these simple power laws across orders of magnitude in model scale provides compelling evidence that larger models are also more capable models. However, scaling up models under the constraints of hardware and infrastructure is no easy feat, and rapidly becomes a hard and expensive engineering problem. We investigate ways to tentatively cheat scaling laws, and train larger models for cheaper. We emulate an increase in effective parameters, using efficient approximations: either by doping the models with frozen random parameters, or by using fast structured transforms in place of dense linear layers. We find that the scaling relationship between test loss and compute depends only on the actual number of trainable parameters; scaling laws cannot be deceived by spurious parameters.
Efficient and Scalable Agentic AI with Heterogeneous Systems
AI agents are emerging as a dominant workload in a wide range of applications, promising to be the vehicle that delivers the promised benefits of AI to enterprises and consumers. Unlike conventional software or static inference, agentic workloads are dynamic and structurally complex. Often these agents are directed graphs of compute and IO operations that span multi-modal data input and conversion), data processing and context gathering (e.g vector DB lookups), multiple LLM inferences, tool calls, etc. To scale AI agent usage, we need efficient and scalable deployment and agent-serving infrastructure. To tackle this challenge, in this paper, we present a system design for dynamic orchestration of AI agent workloads on heterogeneous compute infrastructure spanning CPUs and accelerators, both from different vendors and across different performance tiers within a single vendor. The system delivers several building blocks: a framework for planning and optimizing agentic AI execution graphs using cost models that account for compute, memory, and bandwidth constraints of different HW; a MLIR based representation and compilation system that can decompose AI agent execution graphs into granular operators and generate code for different HW options; and a dynamic orchestration system that can place the granular components across a heterogeneous compute infrastructure and stitch them together while meeting an end-to-end SLA. Our design performs a systems level TCO optimization and preliminary results show that leveraging a heterogeneous infrastructure can deliver significant TCO benefits. A preliminary surprising finding is that for some workloads a heterogeneous combination of older generation GPUs with newer accelerators can deliver similar TCO as the latest generation homogenous GPU infrastructure design, potentially extending the life of deployed infrastructure.
CO2: Efficient Distributed Training with Full Communication-Computation Overlap
The fundamental success of large language models hinges upon the efficacious implementation of large-scale distributed training techniques. Nevertheless, building a vast, high-performance cluster featuring high-speed communication interconnectivity is prohibitively costly, and accessible only to prominent entities. In this work, we aim to lower this barrier and democratize large-scale training with limited bandwidth clusters. We propose a new approach called CO2 that introduces local-updating and asynchronous communication to the distributed data-parallel training, thereby facilitating the full overlap of COmunication with COmputation. CO2 is able to attain a high scalability even on extensive multi-node clusters constrained by very limited communication bandwidth. We further propose the staleness gap penalty and outer momentum clipping techniques together with CO2 to bolster its convergence and training stability. Besides, CO2 exhibits seamless integration with well-established ZeRO-series optimizers which mitigate memory consumption of model states with large model training. We also provide a mathematical proof of convergence, accompanied by the establishment of a stringent upper bound. Furthermore, we validate our findings through an extensive set of practical experiments encompassing a wide range of tasks in the fields of computer vision and natural language processing. These experiments serve to demonstrate the capabilities of CO2 in terms of convergence, generalization, and scalability when deployed across configurations comprising up to 128 A100 GPUs. The outcomes emphasize the outstanding capacity of CO2 to hugely improve scalability, no matter on clusters with 800Gbps RDMA or 80Gbps TCP/IP inter-node connections.
Fast and Accurate Model Scaling
In this work we analyze strategies for convolutional neural network scaling; that is, the process of scaling a base convolutional network to endow it with greater computational complexity and consequently representational power. Example scaling strategies may include increasing model width, depth, resolution, etc. While various scaling strategies exist, their tradeoffs are not fully understood. Existing analysis typically focuses on the interplay of accuracy and flops (floating point operations). Yet, as we demonstrate, various scaling strategies affect model parameters, activations, and consequently actual runtime quite differently. In our experiments we show the surprising result that numerous scaling strategies yield networks with similar accuracy but with widely varying properties. This leads us to propose a simple fast compound scaling strategy that encourages primarily scaling model width, while scaling depth and resolution to a lesser extent. Unlike currently popular scaling strategies, which result in about O(s) increase in model activation w.r.t. scaling flops by a factor of s, the proposed fast compound scaling results in close to O(s) increase in activations, while achieving excellent accuracy. This leads to comparable speedups on modern memory-limited hardware (e.g., GPU, TPU). More generally, we hope this work provides a framework for analyzing and selecting scaling strategies under various computational constraints.
Communication-Efficient Language Model Training Scales Reliably and Robustly: Scaling Laws for DiLoCo
As we scale to more massive machine learning models, the frequent synchronization demands inherent in data-parallel approaches create significant slowdowns, posing a critical challenge to further scaling. Recent work develops an approach (DiLoCo) that relaxes synchronization demands without compromising model quality. However, these works do not carefully analyze how DiLoCo's behavior changes with model size. In this work, we study the scaling law behavior of DiLoCo when training LLMs under a fixed compute budget. We focus on how algorithmic factors, including number of model replicas, hyperparameters, and token budget affect training in ways that can be accurately predicted via scaling laws. We find that DiLoCo scales both predictably and robustly with model size. When well-tuned, DiLoCo scales better than data-parallel training with model size, and can outperform data-parallel training even at small model sizes. Our results showcase a more general set of benefits of DiLoCo than previously documented, including increased optimal batch sizes, improved downstream generalization with scale, and improved evaluation loss for a fixed token budget.
MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs
We present the design, implementation and engineering experience in building and deploying MegaScale, a production system for training large language models (LLMs) at the scale of more than 10,000 GPUs. Training LLMs at this scale brings unprecedented challenges to training efficiency and stability. We take a full-stack approach that co-designs the algorithmic and system components across model block and optimizer design, computation and communication overlapping, operator optimization, data pipeline, and network performance tuning. Maintaining high efficiency throughout the training process (i.e., stability) is an important consideration in production given the long extent of LLM training jobs. Many hard stability issues only emerge at large scale, and in-depth observability is the key to address them. We develop a set of diagnosis tools to monitor system components and events deep in the stack, identify root causes, and derive effective techniques to achieve fault tolerance and mitigate stragglers. MegaScale achieves 55.2% Model FLOPs Utilization (MFU) when training a 175B LLM model on 12,288 GPUs, improving the MFU by 1.34x compared to Megatron-LM. We share our operational experience in identifying and fixing failures and stragglers. We hope by articulating the problems and sharing our experience from a systems perspective, this work can inspire future LLM systems research.
Expert-as-a-Service: Towards Efficient, Scalable, and Robust Large-scale MoE Serving
Mixture-of-Experts (MoE) models challenge serving infrastructures with dynamic, sparse expert utilization, causing instability on conventional systems designed for dense architectures. We propose EaaS, a novel serving system to enable efficient, scalable, and robust MoE deployment. Our system disaggregates MoE modules into independent, stateless services. This design enables fine-grained resource scaling and provides inherent fault tolerance by decoupling compute units. The architecture is powered by a high-performance, CPU-free peer-to-peer communication library that ensures minimal overhead and high throughput. Experiments confirm EaaS's scalability and efficiency, achieving performance comparable to monolithic systems while providing robust fault tolerance and strong scalability. EaaS incurs less than a 2% throughput reduction under simulated hardware failures that would otherwise halt monolithic architectures. It further saves up to 37.5% of computing resources through dynamic fine-grained adaptation to serving traffic, demonstrating strong resilience for large-scale MoE deployment in production.
Scaling Up Models and Data with t5x and seqio
Recent neural network-based language models have benefited greatly from scaling up the size of training datasets and the number of parameters in the models themselves. Scaling can be complicated due to various factors including the need to distribute computation on supercomputer clusters (e.g., TPUs), prevent bottlenecks when infeeding data, and ensure reproducible results. In this work, we present two software libraries that ease these issues: t5x simplifies the process of building and training large language models at scale while maintaining ease of use, and seqio provides a task-based API for simple creation of fast and reproducible training data and evaluation pipelines. These open-source libraries have been used to train models with hundreds of billions of parameters on datasets with multiple terabytes of training data. Along with the libraries, we release configurations and instructions for T5-like encoder-decoder models as well as GPT-like decoder-only architectures. t5x and seqio are open source and available at https://github.com/google-research/t5x and https://github.com/google/seqio, respectively.
Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of LLM Inference
With the ubiquitous use of modern large language models (LLMs) across industries, the inference serving for these models is ever expanding. Given the high compute and memory requirements of modern LLMs, more and more top-of-the-line GPUs are being deployed to serve these models. Energy availability has come to the forefront as the biggest challenge for data center expansion to serve these models. In this paper, we present the trade-offs brought up by making energy efficiency the primary goal of LLM serving under performance SLOs. We show that depending on the inputs, the model, and the service-level agreements, there are several knobs available to the LLM inference provider to use for being energy efficient. We characterize the impact of these knobs on the latency, throughput, as well as the energy. By exploring these trade-offs, we offer valuable insights into optimizing energy usage without compromising on performance, thereby paving the way for sustainable and cost-effective LLM deployment in data center environments.
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.
Self-healing Nodes with Adaptive Data-Sharding
Data sharding, a technique for partitioning and distributing data among multiple servers or nodes, offers enhancements in the scalability, performance, and fault tolerance of extensive distributed systems. Nonetheless, this strategy introduces novel challenges, including load balancing among shards, management of node failures and data loss, and adaptation to evolving data and workload patterns. This paper proposes an innovative approach to tackle these challenges by empowering self-healing nodes with adaptive data sharding. Leveraging concepts such as self-replication, fractal regeneration, sentient data sharding, and symbiotic node clusters, our approach establishes a dynamic and resilient data sharding scheme capable of addressing diverse scenarios and meeting varied requirements. Implementation and evaluation of our approach involve a prototype system simulating a large-scale distributed database across various data sharding scenarios. Comparative analyses against existing data sharding techniques highlight the superior scalability, performance, fault tolerance, and adaptability of our approach. Additionally, the paper delves into potential applications and limitations, providing insights into the future research directions that can further advance this innovative approach.
Scaling Laws for Data Filtering -- Data Curation cannot be Compute Agnostic
Vision-language models (VLMs) are trained for thousands of GPU hours on carefully curated web datasets. In recent times, data curation has gained prominence with several works developing strategies to retain 'high-quality' subsets of 'raw' scraped data. For instance, the LAION public dataset retained only 10% of the total crawled data. However, these strategies are typically developed agnostic of the available compute for training. In this paper, we first demonstrate that making filtering decisions independent of training compute is often suboptimal: the limited high-quality data rapidly loses its utility when repeated, eventually requiring the inclusion of 'unseen' but 'lower-quality' data. To address this quality-quantity tradeoff (QQT), we introduce neural scaling laws that account for the non-homogeneous nature of web data, an angle ignored in existing literature. Our scaling laws (i) characterize the differing 'utility' of various quality subsets of web data; (ii) account for how utility diminishes for a data point at its 'nth' repetition; and (iii) formulate the mutual interaction of various data pools when combined, enabling the estimation of model performance on a combination of multiple data pools without ever jointly training on them. Our key message is that data curation cannot be agnostic of the total compute that a model will be trained for. Our scaling laws allow us to curate the best possible pool for achieving top performance on Datacomp at various compute budgets, carving out a pareto-frontier for data curation. Code is available at https://github.com/locuslab/scaling_laws_data_filtering.
Ray: A Distributed Framework for Emerging AI Applications
The next generation of AI applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray---a distributed system to address them. Ray implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine. To meet the performance requirements, Ray employs a distributed scheduler and a distributed and fault-tolerant store to manage the system's control state. In our experiments, we demonstrate scaling beyond 1.8 million tasks per second and better performance than existing specialized systems for several challenging reinforcement learning applications.
Wukong: Towards a Scaling Law for Large-Scale Recommendation
Scaling laws play an instrumental role in the sustainable improvement in model quality. Unfortunately, recommendation models to date do not exhibit such laws similar to those observed in the domain of large language models, due to the inefficiencies of their upscaling mechanisms. This limitation poses significant challenges in adapting these models to increasingly more complex real-world datasets. In this paper, we propose an effective network architecture based purely on stacked factorization machines, and a synergistic upscaling strategy, collectively dubbed Wukong, to establish a scaling law in the domain of recommendation. Wukong's unique design makes it possible to capture diverse, any-order of interactions simply through taller and wider layers. We conducted extensive evaluations on six public datasets, and our results demonstrate that Wukong consistently outperforms state-of-the-art models quality-wise. Further, we assessed Wukong's scalability on an internal, large-scale dataset. The results show that Wukong retains its superiority in quality over state-of-the-art models, while holding the scaling law across two orders of magnitude in model complexity, extending beyond 100 Gflop or equivalently up to GPT-3/LLaMa-2 scale of total training compute, where prior arts fall short.
Adaptive Patch Exiting for Scalable Single Image Super-Resolution
Since the future of computing is heterogeneous, scalability is a crucial problem for single image super-resolution. Recent works try to train one network, which can be deployed on platforms with different capacities. However, they rely on the pixel-wise sparse convolution, which is not hardware-friendly and achieves limited practical speedup. As image can be divided into patches, which have various restoration difficulties, we present a scalable method based on Adaptive Patch Exiting (APE) to achieve more practical speedup. Specifically, we propose to train a regressor to predict the incremental capacity of each layer for the patch. Once the incremental capacity is below the threshold, the patch can exit at the specific layer. Our method can easily adjust the trade-off between performance and efficiency by changing the threshold of incremental capacity. Furthermore, we propose a novel strategy to enable the network training of our method. We conduct extensive experiments across various backbones, datasets and scaling factors to demonstrate the advantages of our method. Code is available at https://github.com/littlepure2333/APE
Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation
In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.
Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training
The success of Transformer models has pushed the deep learning model scale to billions of parameters. Due to the limited memory resource of a single GPU, However, the best practice for choosing the optimal parallel strategy is still lacking, since it requires domain expertise in both deep learning and parallel computing. The Colossal-AI system addressed the above challenge by introducing a unified interface to scale your sequential code of model training to distributed environments. It supports parallel training methods such as data, pipeline, tensor, and sequence parallelism, as well as heterogeneous training methods integrated with zero redundancy optimizer. Compared to the baseline system, Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
S*: Test Time Scaling for Code Generation
Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* extends the existing parallel scaling paradigm with sequential scaling to push performance boundaries. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions. We evaluate across 12 Large Language Models and Large Reasoning Model and show: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models - GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models - DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Code will be available under https://github.com/NovaSky-AI/SkyThought.
"We Need Structured Output": Towards User-centered Constraints on Large Language Model Output
Large language models can produce creative and diverse responses. However, to integrate them into current developer workflows, it is essential to constrain their outputs to follow specific formats or standards. In this work, we surveyed 51 experienced industry professionals to understand the range of scenarios and motivations driving the need for output constraints from a user-centered perspective. We identified 134 concrete use cases for constraints at two levels: low-level, which ensures the output adhere to a structured format and an appropriate length, and high-level, which requires the output to follow semantic and stylistic guidelines without hallucination. Critically, applying output constraints could not only streamline the currently repetitive process of developing, testing, and integrating LLM prompts for developers, but also enhance the user experience of LLM-powered features and applications. We conclude with a discussion on user preferences and needs towards articulating intended constraints for LLMs, alongside an initial design for a constraint prototyping tool.
Llumnix: Dynamic Scheduling for Large Language Model Serving
Inference serving for large language models (LLMs) is the key to unleashing their potential in people's daily lives. However, efficient LLM serving remains challenging today because the requests are inherently heterogeneous and unpredictable in terms of resource and latency requirements, as a result of the diverse applications and the dynamic execution nature of LLMs. Existing systems are fundamentally limited in handling these characteristics and cause problems such as severe queuing delays, poor tail latencies, and SLO violations. We introduce Llumnix, an LLM serving system that reacts to such heterogeneous and unpredictable requests by runtime rescheduling across multiple model instances. Similar to context switching across CPU cores in modern operating systems, Llumnix reschedules requests to improve load balancing and isolation, mitigate resource fragmentation, and differentiate request priorities and SLOs. Llumnix implements the rescheduling with an efficient and scalable live migration mechanism for requests and their in-memory states, and exploits it in a dynamic scheduling policy that unifies the multiple rescheduling scenarios elegantly. Our evaluations show that Llumnix improves tail latencies by an order of magnitude, accelerates high-priority requests by up to 1.5x, and delivers up to 36% cost savings while achieving similar tail latencies, compared against state-of-the-art LLM serving systems. Llumnix is publicly available at https://github.com/AlibabaPAI/llumnix.
Value-Based Deep RL Scales Predictably
Scaling data and compute is critical to the success of machine learning. However, scaling demands predictability: we want methods to not only perform well with more compute or data, but also have their performance be predictable from small-scale runs, without running the large-scale experiment. In this paper, we show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior. First, we show that data and compute requirements to attain a given performance level lie on a Pareto frontier, controlled by the updates-to-data (UTD) ratio. By estimating this frontier, we can predict this data requirement when given more compute, and this compute requirement when given more data. Second, we determine the optimal allocation of a total resource budget across data and compute for a given performance and use it to determine hyperparameters that maximize performance for a given budget. Third, this scaling behavior is enabled by first estimating predictable relationships between hyperparameters, which is used to manage effects of overfitting and plasticity loss unique to RL. We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym, when extrapolating to higher levels of data, compute, budget, or performance.
The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving
We survey the large language model (LLM) serving area to understand the intricate dynamics between cost-efficiency and accuracy, which is magnified by the growing need for longer contextual understanding when deploying models at a massive scale. Our findings reveal that works in this space optimize along three distinct but conflicting goals: improving serving context length (C), improving serving accuracy (A), and improving serving performance (P). Drawing inspiration from the CAP theorem in databases, we propose a CAP principle for LLM serving, which suggests that any optimization can improve at most two of these three goals simultaneously. Our survey categorizes existing works within this framework. We find the definition and continuity of user-perceived measurement metrics are crucial in determining whether a goal has been met, akin to prior CAP databases in the wild. We recognize the CAP principle for LLM serving as a guiding principle, rather than a formal theorem, to inform designers of the inherent and dynamic trade-offs in serving models. As serving accuracy and performance have been extensively studied, this survey focuses on works that extend serving context length and address the resulting challenges.
Compositional Shielding and Reinforcement Learning for Multi-Agent Systems
Deep reinforcement learning has emerged as a powerful tool for obtaining high-performance policies. However, the safety of these policies has been a long-standing issue. One promising paradigm to guarantee safety is a shield, which shields a policy from making unsafe actions. However, computing a shield scales exponentially in the number of state variables. This is a particular concern in multi-agent systems with many agents. In this work, we propose a novel approach for multi-agent shielding. We address scalability by computing individual shields for each agent. The challenge is that typical safety specifications are global properties, but the shields of individual agents only ensure local properties. Our key to overcome this challenge is to apply assume-guarantee reasoning. Specifically, we present a sound proof rule that decomposes a (global, complex) safety specification into (local, simple) obligations for the shields of the individual agents. Moreover, we show that applying the shields during reinforcement learning significantly improves the quality of the policies obtained for a given training budget. We demonstrate the effectiveness and scalability of our multi-agent shielding framework in two case studies, reducing the computation time from hours to seconds and achieving fast learning convergence.
Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models
Scaling the capacity of language models has consistently proven to be a reliable approach for improving performance and unlocking new capabilities. Capacity can be primarily defined by two dimensions: the number of model parameters and the compute per example. While scaling typically involves increasing both, the precise interplay between these factors and their combined contribution to overall capacity remains not fully understood. We explore this relationship in the context of sparse Mixture-of-Experts (MoEs), which allow scaling the number of parameters without proportionally increasing the FLOPs per example. We investigate how varying the sparsity level, i.e., the fraction of inactive parameters, impacts model's performance during pretraining and downstream few-shot evaluation. We find that under different constraints (e.g., parameter size and total training compute), there is an optimal level of sparsity that improves both training efficiency and model performance. These results provide a better understanding of the impact of sparsity in scaling laws for MoEs and complement existing works in this area, offering insights for designing more efficient architectures.
Generalizing Scaling Laws for Dense and Sparse Large Language Models
Over the past few years, the size of language models has grown exponentially, as has the computational cost to train these large models. This rapid growth has motivated researchers to develop new techniques aimed at enhancing the efficiency of the training process. Despite these advancements, optimally predicting the model size or allocating optimal resources remains a challenge. Several efforts have addressed the challenge by proposing different scaling laws, but almost all of them are architecture-specific (dense or sparse). In this work we revisit existing scaling laws and propose a generalized scaling law to provide a unified framework that is applicable to both dense and sparse large language models. We evaluate and compare our proposed scaling law with existing scaling laws to demonstrate its effectiveness.
Large-scale image analysis using docker sandboxing
With the advent of specialized hardware such as Graphics Processing Units (GPUs), large scale image localization, classification and retrieval have seen increased prevalence. Designing scalable software architecture that co-evolves with such specialized hardware is a challenge in the commercial setting. In this paper, we describe one such architecture (Cortexica) that leverages scalability of GPUs and sandboxing offered by docker containers. This allows for the flexibility of mixing different computer architectures as well as computational algorithms with the security of a trusted environment. We illustrate the utility of this framework in a commercial setting i.e., searching for multiple products in an image by combining image localisation and retrieval.
Scaling Retrieval-Based Language Models with a Trillion-Token Datastore
Scaling laws with respect to the amount of training data and the number of parameters allow us to predict the cost-benefit trade-offs of pretraining language models (LMs) in different configurations. In this paper, we consider another dimension of scaling: the amount of data available at inference time. Specifically, we find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation, such that a smaller model augmented with a large datastore outperforms a larger LM-only model on knowledge-intensive tasks. By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget. We carry out our study by constructing a 1.4 trillion-token datastore named MassiveDS, which is the largest and the most diverse open-sourced datastore for retrieval-based LMs to date, and designing an efficient pipeline for studying datastore scaling in a computationally accessible manner. Finally, we analyze the effect of improving the retriever, datastore quality filtering, and other design choices on our observed scaling trends. Overall, our results show that datastore size should be considered as an integral part of LM efficiency and performance trade-offs. To facilitate future research, we open-source our datastore and code at https://github.com/RulinShao/retrieval-scaling.
Parallel Scaling Law for Language Models
It is commonly believed that scaling language models should commit a significant space or time cost, by increasing the parameters (parameter scaling) or output tokens (inference-time scaling). We introduce the third and more inference-efficient scaling paradigm: increasing the model's parallel computation during both training and inference time. We apply P diverse and learnable transformations to the input, execute forward passes of the model in parallel, and dynamically aggregate the P outputs. This method, namely parallel scaling (ParScale), scales parallel computation by reusing existing parameters and can be applied to any model structure, optimization procedure, data, or task. We theoretically propose a new scaling law and validate it through large-scale pre-training, which shows that a model with P parallel streams is similar to scaling the parameters by O(log P) while showing superior inference efficiency. For example, ParScale can use up to 22times less memory increase and 6times less latency increase compared to parameter scaling that achieves the same performance improvement. It can also recycle an off-the-shelf pre-trained model into a parallelly scaled one by post-training on a small amount of tokens, further reducing the training budget. The new scaling law we discovered potentially facilitates the deployment of more powerful models in low-resource scenarios, and provides an alternative perspective for the role of computation in machine learning.
CaRL: Learning Scalable Planning Policies with Simple Rewards
We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.
A quantitative framework for evaluating architectural patterns in ML systems
Contemporary intelligent systems incorporate software components, including machine learning components. As they grow in complexity and data volume such machine learning systems face unique quality challenges like scalability and performance. To overcome them, engineers may often use specific architectural patterns, however their impact on ML systems is difficult to quantify. The effect of software architecture on traditional systems is well studied, however more work is needed in the area of machine learning systems. This study proposes a framework for quantitative assessment of architectural patterns in ML systems, focusing on scalability and performance metrics for cost-effective CPU-based inference. We integrate these metrics into a systematic evaluation process for selection of architectural patterns and demonstrate its application through a case study. The approach shown in the paper should enable software architects to objectively analyze and select optimal patterns, addressing key challenges in ML system design.
SCALE: Selective Resource Allocation for Overcoming Performance Bottlenecks in Mathematical Test-time Scaling
Test-time compute scaling has emerged as a powerful paradigm for enhancing mathematical reasoning in large language models (LLMs) by allocating additional computational resources during inference. However, current methods employ uniform resource distribution across all reasoning sub-problems, creating fundamental bottlenecks where challenging sub-problems receive insufficient attention while routine operations consume disproportionate resources. This uniform allocation creates performance bottlenecks where additional computational resources yield diminishing returns. Inspired by dual-process theory, we propose SCALE (Selective Resource Allocation), a framework that selectively allocates computational resources based on sub-problem difficulty. SCALE operates through four stages: (1) problem decomposition into sequential reasoning sub-problems, (2) difficulty assessment of each sub-problem to distinguish between routine operations and computationally challenging sub-problems, (3) selective processing mode assignment between System 1 for simple sub-problems and System 2 for complex ones, and (4) sequential execution with context propagation. By concentrating resources on challenging sub-problems while processing routine operations efficiently, SCALE achieves substantial performance improvements with superior resource utilization. Extensive experiments demonstrate that SCALE significantly outperforms uniform scaling baselines, achieving accuracy improvements of up to 13.75 percentage points (57.50% to 71.25% on AIME25) while reducing computational costs by 33%-53%, representing a major advance in test-time scaling that addresses fundamental limitations of current approaches.
A Single Transformer for Scalable Vision-Language Modeling
We present SOLO, a single transformer for Scalable visiOn-Language mOdeling. Current large vision-language models (LVLMs) such as LLaVA mostly employ heterogeneous architectures that connect pre-trained visual encoders with large language models (LLMs) to facilitate visual recognition and complex reasoning. Although achieving remarkable performance with relatively lightweight training, we identify four primary scalability limitations: (1) The visual capacity is constrained by pre-trained visual encoders, which are typically an order of magnitude smaller than LLMs. (2) The heterogeneous architecture complicates the use of established hardware and software infrastructure. (3) Study of scaling laws on such architecture must consider three separate components - visual encoder, connector, and LLMs, which complicates the analysis. (4) The use of existing visual encoders typically requires following a pre-defined specification of image inputs pre-processing, for example, by reshaping inputs to fixed-resolution square images, which presents difficulties in processing and training on high-resolution images or those with unusual aspect ratio. A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs; however, its limited adoption in the modern context likely stems from the absence of reliable training recipes that balance both modalities and ensure stable training for billion-scale models. In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM using moderate academic resources. The training recipe involves initializing from LLMs, sequential pre-training on ImageNet and web-scale data, and instruction fine-tuning on our curated high-quality datasets. On extensive evaluation, SOLO demonstrates performance comparable to LLaVA-v1.5-7B, particularly excelling in visual mathematical reasoning.
ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning
In the last three years, the largest dense deep learning models have grown over 1000x to reach hundreds of billions of parameters, while the GPU memory has only grown by 5x (16 GB to 80 GB). Therefore, the growth in model scale has been supported primarily though system innovations that allow large models to fit in the aggregate GPU memory of multiple GPUs. However, we are getting close to the GPU memory wall. It requires 800 NVIDIA V100 GPUs just to fit a trillion parameter model for training, and such clusters are simply out of reach for most data scientists. In addition, training models at that scale requires complex combinations of parallelism techniques that puts a big burden on the data scientists to refactor their model. In this paper we present ZeRO-Infinity, a novel heterogeneous system technology that leverages GPU, CPU, and NVMe memory to allow for unprecedented model scale on limited resources without requiring model code refactoring. At the same time it achieves excellent training throughput and scalability, unencumbered by the limited CPU or NVMe bandwidth. ZeRO-Infinity can fit models with tens and even hundreds of trillions of parameters for training on current generation GPU clusters. It can be used to fine-tune trillion parameter models on a single NVIDIA DGX-2 node, making large models more accessible. In terms of training throughput and scalability, it sustains over 25 petaflops on 512 NVIDIA V100 GPUs(40% of peak), while also demonstrating super linear scalability. An open source implementation of ZeRO-Infinity is available through DeepSpeed, a deep learning optimization library that makes distributed training easy, efficient, and effective.
Scaling Laws for Neural Language Models
We study empirical scaling laws for language model performance on the cross-entropy loss. The loss scales as a power-law with model size, dataset size, and the amount of compute used for training, with some trends spanning more than seven orders of magnitude. Other architectural details such as network width or depth have minimal effects within a wide range. Simple equations govern the dependence of overfitting on model/dataset size and the dependence of training speed on model size. These relationships allow us to determine the optimal allocation of a fixed compute budget. Larger models are significantly more sample-efficient, such that optimally compute-efficient training involves training very large models on a relatively modest amount of data and stopping significantly before convergence.
AI and Memory Wall
The availability of unprecedented unsupervised training data, along with neural scaling laws, has resulted in an unprecedented surge in model size and compute requirements for serving/training LLMs. However, the main performance bottleneck is increasingly shifting to memory bandwidth. Over the past 20 years, peak server hardware FLOPS has been scaling at 3.0x/2yrs, outpacing the growth of DRAM and interconnect bandwidth, which have only scaled at 1.6 and 1.4 times every 2 years, respectively. This disparity has made memory, rather than compute, the primary bottleneck in AI applications, particularly in serving. Here, we analyze encoder and decoder Transformer models and show how memory bandwidth can become the dominant bottleneck for decoder models. We argue for a redesign in model architecture, training, and deployment strategies to overcome this memory limitation.
Decentralized and Self-adaptive Core Maintenance on Temporal Graphs
Key graph-based problems play a central role in understanding network topology and uncovering patterns of similarity in homogeneous and temporal data. Such patterns can be revealed by analyzing communities formed by nodes, which in turn can be effectively modeled through temporal k-cores. This paper introduces a novel decentralized and incremental algorithm for computing the core decomposition of temporal networks. Decentralized solutions leverage the ability of network nodes to communicate and coordinate locally, addressing complex problems in a scalable, adaptive, and timely manner. By leveraging previously computed coreness values, our approach significantly reduces the activation of nodes and the volume of message exchanges when the network changes over time. This enables scalability with only a minimal trade-off in precision. Experimental evaluations on large real-world networks under varying levels of dynamism demonstrate the efficiency of our solution compared to a state-of-the-art approach, particularly in terms of active nodes, communication overhead, and convergence speed.
Power Lines: Scaling Laws for Weight Decay and Batch Size in LLM Pre-training
Efficient LLM pre-training requires well-tuned hyperparameters (HPs), including learning rate {\eta} and weight decay {\lambda}. We study scaling laws for HPs: formulas for how to scale HPs as we scale model size N, dataset size D, and batch size B. Recent work suggests the AdamW timescale, B/({\eta}{\lambda}D), should remain constant across training settings, and we verify the implication that optimal {\lambda} scales linearly with B, for a fixed N,D. However, as N,D scale, we show the optimal timescale obeys a precise power law in the tokens-per-parameter ratio, D/N. This law thus provides a method to accurately predict {\lambda}opt in advance of large-scale training. We also study scaling laws for optimal batch size Bopt (the B enabling lowest loss at a given N,D) and critical batch size Bcrit (the B beyond which further data parallelism becomes ineffective). In contrast with prior work, we find both Bopt and Bcrit scale as power laws in D, independent of model size, N. Finally, we analyze how these findings inform the real-world selection of Pareto-optimal N and D under dual training time and compute objectives.
Supporting Our AI Overlords: Redesigning Data Systems to be Agent-First
Large Language Model (LLM) agents, acting on their users' behalf to manipulate and analyze data, are likely to become the dominant workload for data systems in the future. When working with data, agents employ a high-throughput process of exploration and solution formulation for the given task, one we call agentic speculation. The sheer volume and inefficiencies of agentic speculation can pose challenges for present-day data systems. We argue that data systems need to adapt to more natively support agentic workloads. We take advantage of the characteristics of agentic speculation that we identify, i.e., scale, heterogeneity, redundancy, and steerability - to outline a number of new research opportunities for a new agent-first data systems architecture, ranging from new query interfaces, to new query processing techniques, to new agentic memory stores.
NanoFlow: Towards Optimal Large Language Model Serving Throughput
The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.
From Theory to Practice: Plug and Play with Succinct Data Structures
Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.
BitStack: Fine-Grained Size Control for Compressed Large Language Models in Variable Memory Environments
Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from capability to availability, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce BitStack, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at https://github.com/xinghaow99/BitStack.
A Survey of Resource-efficient LLM and Multimodal Foundation Models
Large foundation models, including large language models (LLMs), vision transformers (ViTs), diffusion, and LLM-based multimodal models, are revolutionizing the entire machine learning lifecycle, from training to deployment. However, the substantial advancements in versatility and performance these models offer come at a significant cost in terms of hardware resources. To support the growth of these large models in a scalable and environmentally sustainable way, there has been a considerable focus on developing resource-efficient strategies. This survey delves into the critical importance of such research, examining both algorithmic and systemic aspects. It offers a comprehensive analysis and valuable insights gleaned from existing literature, encompassing a broad array of topics from cutting-edge model architectures and training/serving algorithms to practical system designs and implementations. The goal of this survey is to provide an overarching understanding of how current approaches are tackling the resource challenges posed by large foundation models and to potentially inspire future breakthroughs in this field.
How Does Critical Batch Size Scale in Pre-training?
Training large-scale models under given resources requires careful design of parallelism strategies. In particular, the efficiency notion of critical batch size (CBS), concerning the compromise between time and compute, marks the threshold beyond which greater data parallelism leads to diminishing returns. To operationalize it, we propose a measure of CBS and pre-train a series of auto-regressive language models, ranging from 85 million to 1.2 billion parameters, on the C4 dataset. Through extensive hyper-parameter sweeps and careful control of factors such as batch size, momentum, and learning rate along with its scheduling, we systematically investigate the impact of scale on CBS. Then we fit scaling laws with respect to model and data sizes to decouple their effects. Overall, our results demonstrate that CBS scales primarily with data size rather than model size, a finding we justify theoretically through the analysis of infinite-width limits of neural networks and infinite-dimensional least squares regression. Of independent interest, we highlight the importance of common hyper-parameter choices and strategies for studying large-scale pre-training beyond fixed training durations.
MoE-CAP: Benchmarking Cost, Accuracy and Performance of Sparse Mixture-of-Experts Systems
The sparse Mixture-of-Experts (MoE) architecture is increasingly favored for scaling Large Language Models (LLMs) efficiently, but it depends on heterogeneous compute and memory resources. These factors jointly affect system Cost, Accuracy, and Performance (CAP), making trade-offs inevitable. Existing benchmarks often fail to capture these trade-offs accurately, complicating practical deployment decisions. To address this, we introduce MoE-CAP, a benchmark specifically designed for MoE systems. Our analysis reveals that achieving an optimal balance across CAP is difficult with current hardware; MoE systems typically optimize two of the three dimensions at the expense of the third-a dynamic we term the MoE-CAP trade-off. To visualize this, we propose the CAP Radar Diagram. We further introduce sparsity-aware performance metrics-Sparse Memory Bandwidth Utilization (S-MBU) and Sparse Model FLOPS Utilization (S-MFU)-to enable accurate performance benchmarking of MoE systems across diverse hardware platforms and deployment scenarios.
A Survey on Inference Optimization Techniques for Mixture of Experts Models
The emergence of large-scale Mixture of Experts (MoE) models has marked a significant advancement in artificial intelligence, offering enhanced model capacity and computational efficiency through conditional computation. However, the deployment and inference of these models present substantial challenges in terms of computational resources, latency, and energy efficiency. This comprehensive survey systematically analyzes the current landscape of inference optimization techniques for MoE models across the entire system stack. We first establish a taxonomical framework that categorizes optimization approaches into model-level, system-level, and hardware-level optimizations. At the model level, we examine architectural innovations including efficient expert design, attention mechanisms, various compression techniques such as pruning, quantization, and knowledge distillation, as well as algorithm improvement including dynamic routing strategies and expert merging methods. At the system level, we investigate distributed computing approaches, load balancing mechanisms, and efficient scheduling algorithms that enable scalable deployment. Furthermore, we delve into hardware-specific optimizations and co-design strategies that maximize throughput and energy efficiency. This survey not only provides a structured overview of existing solutions but also identifies key challenges and promising research directions in MoE inference optimization. Our comprehensive analysis serves as a valuable resource for researchers and practitioners working on large-scale deployment of MoE models in resource-constrained environments. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE inference optimization research, we have established a repository accessible at https://github.com/MoE-Inf/awesome-moe-inference/.
Towards a Science of Scaling Agent Systems
Agents, language model (LM)-based systems that are capable of reasoning, planning, and acting are becoming the dominant paradigm for real-world AI applications. Despite this widespread adoption, the principles that determine their performance remain underexplored, leaving practitioners to rely on heuristics rather than principled design choices. We address this gap by deriving quantitative scaling principles for agent systems. We evaluate this across four diverse benchmarks: Finance-Agent, BrowseComp-Plus, PlanCraft, and Workbench. Using five canonical architectures (Single, Independent, Centralized, Decentralized, Hybrid) instantiated across three LLM families, we perform a controlled evaluation spanning 180 configurations with standardized tools and token budgets. We derive a predictive model using empirical coordination metrics, including efficiency, overhead, error amplification, and redundancy, that achieves cross-validated R^2=0.513. We identify three dominant effects: (1) a tool-coordination trade-off: under fixed computational budgets, tool-heavy tasks suffer disproportionately from multi-agent overhead. (2) a capability saturation: coordination yields diminishing or negative returns (beta=-0.408, p<0.001) once single-agent baselines exceed ~45%. (3) topology-dependent error amplification: independent agents amplify errors 17.2x through unchecked propagation, while centralized coordination contains this to 4.4x. Centralized coordination improves performance by 80.9% on parallelizable tasks like financial reasoning, while decentralized coordination excels on dynamic web navigation (+9.2% vs. +0.2%). Yet for sequential reasoning tasks, all multi-agent variants degraded performance by 39-70%. The framework predicts the optimal coordination strategy for 87% of held-out configurations, providing a predictive principle of agentic scaling based on measurable task properties.
Hardware Beyond Backpropagation: a Photonic Co-Processor for Direct Feedback Alignment
The scaling hypothesis motivates the expansion of models past trillions of parameters as a path towards better performance. Recent significant developments, such as GPT-3, have been driven by this conjecture. However, as models scale-up, training them efficiently with backpropagation becomes difficult. Because model, pipeline, and data parallelism distribute parameters and gradients over compute nodes, communication is challenging to orchestrate: this is a bottleneck to further scaling. In this work, we argue that alternative training methods can mitigate these issues, and can inform the design of extreme-scale training hardware. Indeed, using a synaptically asymmetric method with a parallelizable backward pass, such as Direct Feedback Alignement, communication needs are drastically reduced. We present a photonic accelerator for Direct Feedback Alignment, able to compute random projections with trillions of parameters. We demonstrate our system on benchmark tasks, using both fully-connected and graph convolutional networks. Our hardware is the first architecture-agnostic photonic co-processor for training neural networks. This is a significant step towards building scalable hardware, able to go beyond backpropagation, and opening new avenues for deep learning.
Telecom Language Models: Must They Be Large?
The increasing interest in Large Language Models (LLMs) within the telecommunications sector underscores their potential to revolutionize operational efficiency. However, the deployment of these sophisticated models is often hampered by their substantial size and computational demands, raising concerns about their viability in resource-constrained environments. Addressing this challenge, recent advancements have seen the emergence of small language models that surprisingly exhibit performance comparable to their larger counterparts in many tasks, such as coding and common-sense reasoning. Phi-2, a compact yet powerful model, exemplifies this new wave of efficient small language models. This paper conducts a comprehensive evaluation of Phi-2's intrinsic understanding of the telecommunications domain. Recognizing the scale-related limitations, we enhance Phi-2's capabilities through a Retrieval-Augmented Generation approach, meticulously integrating an extensive knowledge base specifically curated with telecom standard specifications. The enhanced Phi-2 model demonstrates a profound improvement in accuracy, answering questions about telecom standards with a precision that closely rivals the more resource-intensive GPT-3.5. The paper further explores the refined capabilities of Phi-2 in addressing problem-solving scenarios within the telecom sector, highlighting its potential and limitations.
Compute Optimal Scaling of Skills: Knowledge vs Reasoning
Scaling laws are a critical component of the LLM development pipeline, most famously as a way to forecast training decisions such as 'compute-optimally' trading-off parameter count and dataset size, alongside a more recent growing list of other crucial decisions. In this work, we ask whether compute-optimal scaling behaviour can be skill-dependent. In particular, we examine knowledge and reasoning-based skills such as knowledge-based QA and code generation, and we answer this question in the affirmative: scaling laws are skill-dependent. Next, to understand whether skill-dependent scaling is an artefact of the pretraining datamix, we conduct an extensive ablation of different datamixes and find that, also when correcting for datamix differences, knowledge and code exhibit fundamental differences in scaling behaviour. We conclude with an analysis of how our findings relate to standard compute-optimal scaling using a validation set, and find that a misspecified validation set can impact compute-optimal parameter count by nearly 50%, depending on its skill composition.
Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.07\% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning
Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.
Not Every AI Problem is a Data Problem: We Should Be Intentional About Data Scaling
While Large Language Models require more and more data to train and scale, rather than looking for any data to acquire, we should consider what types of tasks are more likely to benefit from data scaling. We should be intentional in our data acquisition. We argue that the topology of data itself informs which tasks to prioritize in data scaling, and shapes the development of the next generation of compute paradigms for tasks where data scaling is inefficient, or even insufficient.
The Art of Scaling Reinforcement Learning Compute for LLMs
Reinforcement learning (RL) has become central to training large language models (LLMs), yet the field lacks predictive scaling methodologies comparable to those established for pre-training. Despite rapidly rising compute budgets, there is no principled understanding of how to evaluate algorithmic improvements for scaling RL compute. We present the first large-scale systematic study, amounting to more than 400,000 GPU-hours, that defines a principled framework for analyzing and predicting RL scaling in LLMs. We fit sigmoidal compute-performance curves for RL training and ablate a wide range of common design choices to analyze their effects on asymptotic performance and compute efficiency. We observe: (1) Not all recipes yield similar asymptotic performance, (2) Details such as loss aggregation, normalization, curriculum, and off-policy algorithm primarily modulate compute efficiency without materially shifting the asymptote, and (3) Stable, scalable recipes follow predictable scaling trajectories, enabling extrapolation from smaller-scale runs. Combining these insights, we propose a best-practice recipe, ScaleRL, and demonstrate its effectiveness by successfully scaling and predicting validation performance on a single RL run scaled up to 100,000 GPU-hours. Our work provides both a scientific framework for analyzing scaling in RL and a practical recipe that brings RL training closer to the predictability long achieved in pre-training.
SysLLMatic: Large Language Models are Software System Optimizers
Automatic software system optimization can improve software speed, reduce operating costs, and save energy. Traditional approaches to optimization rely on manual tuning and compiler heuristics, limiting their ability to generalize across diverse codebases and system contexts. Recent methods using Large Language Models (LLMs) offer automation to address these limitations, but often fail to scale to the complexity of real-world software systems and applications. We present SysLLMatic, a system that integrates LLMs with profiling-guided feedback and system performance insights to automatically optimize software code. We evaluate it on three benchmark suites: HumanEval_CPP (competitive programming in C++), SciMark2 (scientific kernels in Java), and DaCapoBench (large-scale software systems in Java). Results show that SysLLMatic can improve system performance, including latency, throughput, energy efficiency, memory usage, and CPU utilization. It consistently outperforms state-of-the-art LLM baselines on microbenchmarks. On large-scale application codes, it surpasses traditional compiler optimizations, achieving average relative improvements of 1.85x in latency and 2.24x in throughput. Our findings demonstrate that LLMs, guided by principled systems thinking and appropriate performance diagnostics, can serve as viable software system optimizers. We further identify limitations of our approach and the challenges involved in handling complex applications. This work provides a foundation for generating optimized code across various languages, benchmarks, and program sizes in a principled manner.
Reliable and Efficient In-Memory Fault Tolerance of Large Language Model Pretraining
Extensive system scales (i.e. thousands of GPU/TPUs) and prolonged training periods (i.e. months of pretraining) significantly escalate the probability of failures when training large language models (LLMs). Thus, efficient and reliable fault-tolerance methods are in urgent need. Checkpointing is the primary fault-tolerance method to periodically save parameter snapshots from GPU memory to disks via CPU memory. In this paper, we identify the frequency of existing checkpoint-based fault-tolerance being significantly limited by the storage I/O overheads, which results in hefty re-training costs on restarting from the nearest checkpoint. In response to this gap, we introduce an in-memory fault-tolerance framework for large-scale LLM pretraining. The framework boosts the efficiency and reliability of fault tolerance from three aspects: (1) Reduced Data Transfer and I/O: By asynchronously caching parameters, i.e., sharded model parameters, optimizer states, and RNG states, to CPU volatile memory, Our framework significantly reduces communication costs and bypasses checkpoint I/O. (2) Enhanced System Reliability: Our framework enhances parameter protection with a two-layer hierarchy: snapshot management processes (SMPs) safeguard against software failures, together with Erasure Coding (EC) protecting against node failures. This double-layered protection greatly improves the survival probability of the parameters compared to existing checkpointing methods. (3) Improved Snapshotting Frequency: Our framework achieves more frequent snapshotting compared with asynchronous checkpointing optimizations under the same saving time budget, which improves the fault tolerance efficiency. Empirical results demonstrate that Our framework minimizes the overhead of fault tolerance of LLM pretraining by effectively leveraging redundant CPU resources.
Cramming: Training a Language Model on a Single GPU in One Day
Recent trends in language modeling have focused on increasing performance through scaling, and have resulted in an environment where training language models is out of reach for most researchers and practitioners. While most in the community are asking how to push the limits of extreme computation, we ask the opposite question: How far can we get with a single GPU in just one day? We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU. Aside from re-analyzing nearly all components of the pretraining pipeline for this scenario and providing a modified pipeline with performance close to BERT, we investigate why scaling down is hard, and which modifications actually improve performance in this scenario. We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings. Through the lens of scaling laws, we categorize a range of recent improvements to training and architecture and discuss their merit and practical applicability (or lack thereof) for the limited compute setting.
Not All Bits Are Equal: Scale-Dependent Memory Optimization Strategies for Reasoning Models
While 4-bit quantization has emerged as a memory-optimal choice for non-reasoning models and zero-shot tasks across scales, we show that this universal prescription fails for reasoning models, where the KV cache rather than model size can dominate memory. Through systematic experiments across 1,700 inference scenarios on AIME25 and GPQA-Diamond, we find a scale-dependent trade-off: models with an effective size below 8-bit 4B parameters achieve better accuracy by allocating memory to more weights rather than longer generation, while larger models achieve better accuracy by allocating memory to longer generations. This scale threshold also determines when parallel scaling becomes memory-efficient and whether KV cache eviction outperforms KV quantization. Our findings show that memory optimization for LLMs cannot be scale-agnostic, while providing principled guidelines: for small reasoning models, prioritize model capacity over test-time compute, while for larger ones, maximize test-time compute. Our results suggest that optimizing reasoning models for deployment requires fundamentally different strategies from those established for non-reasoning models.
ServeGen: Workload Characterization and Generation of Large Language Model Serving in Production
With the widespread adoption of Large Language Models (LLMs), serving LLM inference requests has become an increasingly important task, attracting active research advancements. Practical workloads play an essential role in this process: they are critical for motivating and benchmarking serving techniques and systems. However, the existing understanding of real-world LLM serving workloads is limited due to the lack of a comprehensive workload characterization. Prior analyses remain insufficient in scale and scope, thus failing to fully capture intricate workload characteristics. In this paper, we fill the gap with an in-depth characterization of LLM serving workloads collected from our worldwide cloud inference serving service, covering not only language models but also emerging multimodal and reasoning models, and unveiling important new findings in each case. Moreover, based on our findings, we propose ServeGen, a principled framework for generating realistic LLM serving workloads by composing them on a per-client basis. A practical use case in production validates that ServeGen avoids 50% under-provisioning compared to naive workload generation, demonstrating ServeGen's advantage in performance benchmarking. We will open-source ServeGen to foster future research.
APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation
Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by 22.5% on average (at most 44%) across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves 2.1% on average(at most 8%) higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL
Using Sequential Runtime Distributions for the Parallel Speedup Prediction of SAT Local Search
This paper presents a detailed analysis of the scalability and parallelization of local search algorithms for the Satisfiability problem. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of two SAT local search solvers, namely Sparrow and CCASAT, and compare the predicted performances to the results of an actual experimentation on parallel hardware up to 384 cores. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of instances (random and crafted), we observe that the local search solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal.
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.
DεpS: Delayed ε-Shrinking for Faster Once-For-All Training
CNNs are increasingly deployed across different hardware, dynamic environments, and low-power embedded devices. This has led to the design and training of CNN architectures with the goal of maximizing accuracy subject to such variable deployment constraints. As the number of deployment scenarios grows, there is a need to find scalable solutions to design and train specialized CNNs. Once-for-all training has emerged as a scalable approach that jointly co-trains many models (subnets) at once with a constant training cost and finds specialized CNNs later. The scalability is achieved by training the full model and simultaneously reducing it to smaller subnets that share model weights (weight-shared shrinking). However, existing once-for-all training approaches incur huge training costs reaching 1200 GPU hours. We argue this is because they either start the process of shrinking the full model too early or too late. Hence, we propose Delayed epsilon-Shrinking (DepsilonpS) that starts the process of shrinking the full model when it is partially trained (~50%) which leads to training cost improvement and better in-place knowledge distillation to smaller models. The proposed approach also consists of novel heuristics that dynamically adjust subnet learning rates incrementally (E), leading to improved weight-shared knowledge distillation from larger to smaller subnets as well. As a result, DEpS outperforms state-of-the-art once-for-all training techniques across different datasets including CIFAR10/100, ImageNet-100, and ImageNet-1k on accuracy and cost. It achieves 1.83% higher ImageNet-1k top1 accuracy or the same accuracy with 1.3x reduction in FLOPs and 2.5x drop in training cost (GPU*hrs)
Strategy Proof Mechanisms for Facility Location with Capacity Limits
An important feature of many real world facility location problems are capacity limits on the facilities. We show here how capacity constraints make it harder to design strategy proof mechanisms for facility location, but counter-intuitively can improve the guarantees on how well we can approximate the optimal solution.
Scaling Test-Time Compute Without Verification or RL is Suboptimal
Despite substantial advances in scaling test-time compute, an ongoing debate in the community is how it should be scaled up to enable continued and efficient improvements with scaling. There are largely two approaches: first, distilling successful search or thinking traces; and second, using verification (e.g., 0/1 outcome rewards, reward models, or verifiers) to guide reinforcement learning (RL) and search algorithms. In this paper, we prove that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget. Further, we show that as we scale test-time compute (measured as the output token length) and training data, suboptimality of VF methods scales poorly compared to VB when the base pre-trained LLM presents a heterogeneous distribution over correct solution traces (e.g., different lengths, styles, etc.) and admits a non-sharp distribution over rewards on traces sampled from it. We formalize this condition using anti-concentration [Erdos, 1945]. This implies a stronger result that VB methods scale better asymptotically, with the performance gap between VB and VF methods widening as test-time budget grows. We corroborate our theory empirically on both didactic and math reasoning problems with 3/8/32B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
One Copy Is All You Need: Resource-Efficient Streaming of Medical Imaging Data at Scale
Large-scale medical imaging datasets have accelerated development of artificial intelligence tools for clinical decision support. However, the large size of these datasets is a bottleneck for users with limited storage and bandwidth. Many users may not even require such large datasets as AI models are often trained on lower resolution images. If users could directly download at their desired resolution, storage and bandwidth requirements would significantly decrease. However, it is impossible to anticipate every users' requirements and impractical to store the data at multiple resolutions. What if we could store images at a single resolution but send them at different ones? We propose MIST, an open-source framework to operationalize progressive resolution for streaming medical images at multiple resolutions from a single high-resolution copy. We demonstrate that MIST can dramatically reduce imaging infrastructure inefficiencies for hosting and streaming medical images by >90%, while maintaining diagnostic quality for deep learning applications.
Papaya: Practical, Private, and Scalable Federated Learning
Cross-device Federated Learning (FL) is a distributed learning paradigm with several challenges that differentiate it from traditional distributed learning, variability in the system characteristics on each device, and millions of clients coordinating with a central server being primary ones. Most FL systems described in the literature are synchronous - they perform a synchronized aggregation of model updates from individual clients. Scaling synchronous FL is challenging since increasing the number of clients training in parallel leads to diminishing returns in training speed, analogous to large-batch training. Moreover, stragglers hinder synchronous FL training. In this work, we outline a production asynchronous FL system design. Our work tackles the aforementioned issues, sketches of some of the system design challenges and their solutions, and touches upon principles that emerged from building a production FL system for millions of clients. Empirically, we demonstrate that asynchronous FL converges faster than synchronous FL when training across nearly one hundred million devices. In particular, in high concurrency settings, asynchronous FL is 5x faster and has nearly 8x less communication overhead than synchronous FL.
CloudFormer: An Attention-based Performance Prediction for Public Clouds with Unknown Workload
Cloud platforms are increasingly relied upon to host diverse, resource-intensive workloads due to their scalability, flexibility, and cost-efficiency. In multi-tenant cloud environments, virtual machines are consolidated on shared physical servers to improve resource utilization. While virtualization guarantees resource partitioning for CPU, memory, and storage, it cannot ensure performance isolation. Competition for shared resources such as last-level cache, memory bandwidth, and network interfaces often leads to severe performance degradation. Existing management techniques, including VM scheduling and resource provisioning, require accurate performance prediction to mitigate interference. However, this remains challenging in public clouds due to the black-box nature of VMs and the highly dynamic nature of workloads. To address these limitations, we propose CloudFormer, a dual-branch Transformer-based model designed to predict VM performance degradation in black-box environments. CloudFormer jointly models temporal dynamics and system-level interactions, leveraging 206 system metrics at one-second resolution across both static and dynamic scenarios. This design enables the model to capture transient interference effects and adapt to varying workload conditions without scenario-specific tuning. Complementing the methodology, we provide a fine-grained dataset that significantly expands the temporal resolution and metric diversity compared to existing benchmarks. Experimental results demonstrate that CloudFormer consistently outperforms state-of-the-art baselines across multiple evaluation metrics, achieving robust generalization across diverse and previously unseen workloads. Notably, CloudFormer attains a mean absolute error (MAE) of just 7.8%, representing a substantial improvement in predictive accuracy and outperforming existing methods at least by 28%.
Revisiting the Test-Time Scaling of o1-like Models: Do they Truly Possess Test-Time Scaling Capabilities?
The advent of test-time scaling in large language models (LLMs), exemplified by OpenAI's o1 series, has advanced reasoning capabilities by scaling computational resource allocation during inference. While successors like QwQ, Deepseek-R1 (R1) and LIMO replicate these advancements, whether these models truly possess test-time scaling capabilities remains underexplored. This study found that longer CoTs of these o1-like models do not consistently enhance accuracy; in fact, correct solutions are often shorter than incorrect ones for the same questions. Further investigation shows this phenomenon is closely related to models' self-revision capabilities - longer CoTs contain more self-revisions, which often lead to performance degradation. We then compare sequential and parallel scaling strategies on QwQ, R1 and LIMO, finding that parallel scaling achieves better coverage and scalability. Based on these insights, we propose Shortest Majority Vote, a method that combines parallel scaling strategies with CoT length characteristics, significantly improving models' test-time scalability compared to conventional majority voting approaches.
ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs
Scaling long-context ability is essential for Large Language Models (LLMs). To amortize the memory consumption across multiple devices in long-context training, inter-data partitioning (a.k.a. Data Parallelism) and intra-data partitioning (a.k.a. Context Parallelism) are commonly used. Current training frameworks predominantly treat the two techniques as orthogonal, and establish static communication groups to organize the devices as a static mesh (e.g., a 2D mesh). However, the sequences for LLM training typically vary in lengths, no matter for texts, multi-modalities or reinforcement learning. The mismatch between data heterogeneity and static mesh causes redundant communication and imbalanced computation, degrading the training efficiency. In this work, we introduce ByteScale, an efficient, flexible, and scalable LLM training framework for large-scale mixed training of long and short sequences. The core of ByteScale is a novel parallelism strategy, namely Hybrid Data Parallelism (HDP), which unifies the inter- and intra-data partitioning with a dynamic mesh design. In particular, we build a communication optimizer, which eliminates the redundant communication for short sequences by data-aware sharding and dynamic communication, and further compresses the communication cost for long sequences by selective offloading. Besides, we also develop a balance scheduler to mitigate the imbalanced computation by parallelism-aware data assignment. We evaluate ByteScale with the model sizes ranging from 7B to 141B, context lengths from 256K to 2048K, on a production cluster with more than 12,000 GPUs. Experiment results show that ByteScale outperforms the state-of-the-art training system by up to 7.89x.
Are We There Yet? A Measurement Study of Efficiency for LLM Applications on Mobile Devices
Recent advancements in large language models (LLMs) have prompted interest in deploying these models on mobile devices to enable new applications without relying on cloud connectivity. However, the efficiency constraints of deploying LLMs on resource-limited devices present significant challenges. In this paper, we conduct a comprehensive measurement study to evaluate the efficiency tradeoffs between mobile-based, edge-based, and cloud-based deployments for LLM applications. We implement AutoLife-Lite, a simplified LLM-based application that analyzes smartphone sensor data to infer user location and activity contexts. Our experiments reveal that: (1) Only small-size LLMs (<4B parameters) can run successfully on powerful mobile devices, though they exhibit quality limitations compared to larger models; (2) Model compression is effective in lower the hardware requirement, but may lead to significant performance degradation; (3) The latency to run LLMs on mobile devices with meaningful output is significant (>30 seconds), while cloud services demonstrate better time efficiency (<10 seconds); (4) Edge deployments offer intermediate tradeoffs between latency and model capabilities, with different results on CPU-based and GPU-based settings. These findings provide valuable insights for system designers on the current limitations and future directions for on-device LLM applications.
Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
One of the main challenges in optimal scaling of large language models (LLMs) is the prohibitive cost of hyperparameter tuning, particularly learning rate eta and batch size B. While techniques like muP (Yang et al., 2022) provide scaling rules for optimal eta transfer in the infinite model size limit, the optimal scaling behavior in the infinite data size limit remains unknown. We fill in this gap by observing for the first time an intricate dependence of optimal eta scaling on the pretraining token budget T, B and its relation to the critical batch size B_crit, which we measure to evolve as B_crit propto T. Furthermore, we show that the optimal batch size is positively correlated with B_crit: keeping it fixed becomes suboptimal over time even if learning rate is scaled optimally. Surprisingly, our results demonstrate that the observed optimal eta and B dynamics are preserved with muP model scaling, challenging the conventional view of B_crit dependence solely on loss value. Complementing optimality, we examine the sensitivity of loss to changes in learning rate, where we find the sensitivity to decrease with increase of T and to remain constant with muP model scaling. We hope our results make the first step towards a unified picture of the joint optimal data and model scaling.
LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?
With the rapid development of Model Context Protocol (MCP), the number of MCP servers has surpassed 10,000. However, existing MCP benchmarks are limited to single-server settings with only a few tools, hindering effective evaluation of agent capabilities in large-scale, real-world scenarios. To address this limitation, we present LiveMCPBench, the first comprehensive benchmark comprising 95 real-world tasks grounded in the MCP ecosystem, designed to evaluate LLM agents at scale across diverse servers. To support a scalable and reproducible evaluation pipeline in large-scale MCP environments, we curate LiveMCPTool, a diverse and readily deployable collection of 70 MCP servers and 527 tools. Furthermore, we introduce LiveMCPEval, an LLM-as-a-Judge framework that enables automated and adaptive evaluation in dynamic, time-varying task environments, achieving 81% agreement with human reviewers. Finally, we propose the MCP Copilot Agent, a multi-step agent that routes tools for dynamic planning and executes tools for API interaction across the entire LiveMCPTool suite. Our evaluation covers 10 leading models, with the best-performing model (Claude-Sonnet-4) reaching a 78.95% success rate. However, we observe large performance variance across models, and several widely-used models perform poorly in LiveMCPBench's complex, tool-rich environments. Overall, LiveMCPBench offers the first unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities. Our code and data will be publicly available at https://icip-cas.github.io/LiveMCPBench.
Toward Open Earth Science as Fast and Accessible as Natural Language
Is natural-language-driven earth observation data analysis now feasible with the assistance of Large Language Models (LLMs)? For open science in service of public interest, feasibility requires reliably high accuracy, interactive latencies, low (sustainable) costs, open LLMs, and openly maintainable software -- hence, the challenge. What are the techniques and programming system requirements necessary for satisfying these constraints, and what is the corresponding development and maintenance burden in practice? This study lays the groundwork for exploring these questions, introducing an impactful earth science use-case, and providing a software framework with evaluation data and metrics, along with initial results from employing model scaling, prompt-optimization, and inference-time scaling optimization techniques. While we attain high accuracy (near 100%) across 10 of 11 metrics, the analysis further considers cost (token-spend), latency, and maintainability across this space of techniques. Finally, we enumerate opportunities for further research, general programming and evaluation framework development, and ongoing work for a comprehensive, deployable solution. This is a call for collaboration and contribution.
TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents
We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.
Reproducible scaling laws for contrastive language-image learning
Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on scaling laws has primarily used private data \& models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study will be available at https://github.com/LAION-AI/scaling-laws-openclip
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Scaling has been critical in improving model performance and generalization in machine learning. It involves how a model's performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in other areas, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as surrogate models for ab initio quantum mechanical calculations. The dominant paradigm here is to incorporate many physical domain constraints into the model, such as rotational equivariance. We contend that these complex constraints inhibit the scaling ability of NNIPs, and are likely to lead to performance plateaus in the long run. In this work, we take an alternative approach and start by systematically studying NNIP scaling strategies. Our findings indicate that scaling the model through attention mechanisms is efficient and improves model expressivity. These insights motivate us to develop an NNIP architecture designed for scalability: the Efficiently Scaled Attention Interatomic Potential (EScAIP). EScAIP leverages a multi-head self-attention formulation within graph neural networks, applying attention at the neighbor-level representations. Implemented with highly-optimized attention GPU kernels, EScAIP achieves substantial gains in efficiency--at least 10x faster inference, 5x less memory usage--compared to existing NNIPs. EScAIP also achieves state-of-the-art performance on a wide range of datasets including catalysts (OC20 and OC22), molecules (SPICE), and materials (MPTrj). We emphasize that our approach should be thought of as a philosophy rather than a specific model, representing a proof-of-concept for developing general-purpose NNIPs that achieve better expressivity through scaling, and continue to scale efficiently with increased computational resources and training data.
D^{2}MoE: Dual Routing and Dynamic Scheduling for Efficient On-Device MoE-based LLM Serving
The mixture of experts (MoE) model is a sparse variant of large language models (LLMs), designed to hold a better balance between intelligent capability and computational overhead. Despite its benefits, MoE is still too expensive to deploy on resource-constrained edge devices, especially with the demands of on-device inference services. Recent research efforts often apply model compression techniques, such as quantization, pruning and merging, to restrict MoE complexity. Unfortunately, due to their predefined static model optimization strategies, they cannot always achieve the desired quality-overhead trade-off when handling multiple requests, finally degrading the on-device quality of service. These limitations motivate us to propose the D^2MoE, an algorithm-system co-design framework that matches diverse task requirements by dynamically allocating the most proper bit-width to each expert. Specifically, inspired by the nested structure of matryoshka dolls, we propose the matryoshka weight quantization (MWQ) to progressively compress expert weights in a bit-nested manner and reduce the required runtime memory. On top of it, we further optimize the I/O-computation pipeline and design a heuristic scheduling algorithm following our hottest-expert-bit-first (HEBF) principle, which maximizes the expert parallelism between I/O and computation queue under constrained memory budgets, thus significantly reducing the idle temporal bubbles waiting for the experts to load. Evaluations on real edge devices show that D^2MoE improves the overall inference throughput by up to 1.39times and reduces the peak memory footprint by up to 53% over the latest on-device inference frameworks, while still preserving comparable serving accuracy as its INT8 counterparts.
Beyond neural scaling laws: beating power law scaling via data pruning
Widely observed neural scaling laws, in which error falls off as a power of the training set size, model size, or both, have driven substantial performance improvements in deep learning. However, these improvements through scaling alone require considerable costs in compute and energy. Here we focus on the scaling of error with dataset size and show how in theory we can break beyond power law scaling and potentially even reduce it to exponential scaling instead if we have access to a high-quality data pruning metric that ranks the order in which training examples should be discarded to achieve any pruned dataset size. We then test this improved scaling prediction with pruned dataset size empirically, and indeed observe better than power law scaling in practice on ResNets trained on CIFAR-10, SVHN, and ImageNet. Next, given the importance of finding high-quality pruning metrics, we perform the first large-scale benchmarking study of ten different data pruning metrics on ImageNet. We find most existing high performing metrics scale poorly to ImageNet, while the best are computationally intensive and require labels for every image. We therefore developed a new simple, cheap and scalable self-supervised pruning metric that demonstrates comparable performance to the best supervised metrics. Overall, our work suggests that the discovery of good data-pruning metrics may provide a viable path forward to substantially improved neural scaling laws, thereby reducing the resource costs of modern deep learning.
DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
DistServe improves the performance of large language models (LLMs) serving by disaggregating the prefill and decoding computation. Existing LLM serving systems colocate the two phases and batch the computation of prefill and decoding across all users and requests. We find that this strategy not only leads to strong prefill-decoding interferences but also couples the resource allocation and parallelism plans for both phases. LLM applications often emphasize individual latency for each phase: time to first token (TTFT) for the prefill phase and time per output token (TPOT) of each request for the decoding phase. In the presence of stringent latency requirements, existing systems have to prioritize one latency over the other, or over-provision compute resources to meet both. DistServe assigns prefill and decoding computation to different GPUs, hence eliminating prefill-decoding interferences. Given the application's TTFT and TPOT requirements, DistServe co-optimizes the resource allocation and parallelism strategy tailored for each phase. DistServe also places the two phases according to the serving cluster's bandwidth to minimize the communication caused by disaggregation. As a result, DistServe significantly improves LLM serving performance in terms of the maximum rate that can be served within both TTFT and TPOT constraints on each GPU. Our evaluations show that on various popular LLMs, applications, and latency requirements, DistServe can serve 4.48x more requests or 10.2x tighter SLO, compared to state-of-the-art systems, while staying within latency constraints for > 90% of requests.
Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch
The availability of high-quality data is one of the most important factors in improving the reasoning capability of LLMs. Existing works have demonstrated the effectiveness of creating more instruction data from seed questions or knowledge bases. Recent research indicates that continually scaling up data synthesis from strong models (e.g., GPT-4) can further elicit reasoning performance. Though promising, the open-sourced community still lacks high-quality data at scale and scalable data synthesis methods with affordable costs. To address this, we introduce ScaleQuest, a scalable and novel data synthesis method that utilizes "small-size" (e.g., 7B) open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. With the efficient ScaleQuest, we automatically constructed a mathematical reasoning dataset consisting of 1 million problem-solution pairs, which are more effective than existing open-sourced datasets. It can universally increase the performance of mainstream open-source models (i.e., Mistral, Llama3, DeepSeekMath, and Qwen2-Math) by achieving 29.2% to 46.4% gains on MATH. Notably, simply fine-tuning the Qwen2-Math-7B-Base model with our dataset can even surpass Qwen2-Math-7B-Instruct, a strong and well-aligned model on closed-source data, and proprietary models such as GPT-4-Turbo and Claude-3.5 Sonnet.
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX
We present XLand-MiniGrid, a suite of tools and grid-world environments for meta-reinforcement learning research inspired by the diversity and depth of XLand and the simplicity and minimalism of MiniGrid. XLand-Minigrid is written in JAX, designed to be highly scalable, and can potentially run on GPU or TPU accelerators, democratizing large-scale experimentation with limited resources. To demonstrate the generality of our library, we have implemented some well-known single-task environments as well as new meta-learning environments capable of generating 10^8 distinct tasks. We have empirically shown that the proposed environments can scale up to 2^{13} parallel instances on the GPU, reaching tens of millions of steps per second.
EdgeReasoning: Characterizing Reasoning LLM Deployment on Edge GPUs
Edge intelligence paradigm is increasingly demanded by the emerging autonomous systems, such as robotics. Beyond ensuring privacy-preserving operation and resilience in connectivity-limited environments, edge deployment offers significant energy and cost advantages over cloud-based solutions. However, deploying large language models (LLMs) for reasoning tasks on edge GPUs faces critical challenges from strict latency constraints and limited computational resources. To navigate these constraints, developers must balance multiple design factors - choosing reasoning versus non-reasoning architectures, selecting appropriate model sizes, allocating token budgets, and applying test-time scaling strategies - to meet target latency and optimize accuracy. Yet guidance on optimal combinations of these variables remains scarce. In this work, we present EdgeReasoning, a comprehensive study characterizing the deployment of reasoning LLMs on edge GPUs. We systematically quantify latency-accuracy tradeoffs across various LLM architectures and model sizes. We systematically evaluate prompt-based and model-tuning-based techniques for reducing reasoning token length while maintaining performance quality. We further profile test-time scaling methods with varying degrees of parallelism to maximize accuracy under strict latency budgets. Through these analyses, EdgeReasoning maps the Pareto frontier of achievable accuracy-latency configurations, offering systematic guidance for optimal edge deployment of reasoning LLMs.
Is GPT-OSS Good? A Comprehensive Evaluation of OpenAI's Latest Open Source Models
In August 2025, OpenAI released GPT-OSS models, its first open weight large language models since GPT-2 in 2019, comprising two mixture of experts architectures with 120B and 20B parameters. We evaluated both variants against six contemporary open source large language models ranging from 14.7B to 235B parameters, representing both dense and sparse designs, across ten benchmarks covering general knowledge, mathematical reasoning, code generation, multilingual understanding, and conversational ability. All models were tested in unquantised form under standardised inference settings, with statistical validation using McNemars test and effect size analysis. Results show that gpt-oss-20B consistently outperforms gpt-oss-120B on several benchmarks, such as HumanEval and MMLU, despite requiring substantially less memory and energy per response. Both models demonstrate mid-tier overall performance within the current open source landscape, with relative strength in code generation and notable weaknesses in multilingual tasks. These findings provide empirical evidence that scaling in sparse architectures may not yield proportional performance gains, underscoring the need for further investigation into optimisation strategies and informing more efficient model selection for future open source deployments.
Scalable GANs with Transformers
Scalability has driven recent advances in generative modeling, yet its principles remain underexplored for adversarial learning. We investigate the scalability of Generative Adversarial Networks (GANs) through two design choices that have proven to be effective in other types of generative models: training in a compact Variational Autoencoder latent space and adopting purely transformer-based generators and discriminators. Training in latent space enables efficient computation while preserving perceptual fidelity, and this efficiency pairs naturally with plain transformers, whose performance scales with computational budget. Building on these choices, we analyze failure modes that emerge when naively scaling GANs. Specifically, we find issues as underutilization of early layers in the generator and optimization instability as the network scales. Accordingly, we provide simple and scale-friendly solutions as lightweight intermediate supervision and width-aware learning-rate adjustment. Our experiments show that GAT, a purely transformer-based and latent-space GANs, can be easily trained reliably across a wide range of capacities (S through XL). Moreover, GAT-XL/2 achieves state-of-the-art single-step, class-conditional generation performance (FID of 2.96) on ImageNet-256 in just 40 epochs, 6x fewer epochs than strong baselines.
FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving
Serving numerous users and requests concurrently requires good fairness in Large Language Models (LLMs) serving system. This ensures that, at the same cost, the system can meet the Service Level Objectives (SLOs) of more users , such as time to first token (TTFT) and time between tokens (TBT), rather than allowing a few users to experience performance far exceeding the SLOs. To achieve better fairness, the preemption-based scheduling policy dynamically adjusts the priority of each request to maintain balance during runtime. However, existing systems tend to overly prioritize throughput, overlooking the overhead caused by preemption-induced context switching, which is crucial for maintaining fairness through priority adjustments. In this work, we identify three main challenges that result in this overhead. 1) Inadequate I/O utilization. 2) GPU idleness. 3) Unnecessary I/O transmission during multi-turn conversations. Our key insight is that the block-based KV cache memory policy in existing systems, while achieving near-zero memory waste, leads to discontinuity and insufficient granularity in the KV cache memory. To respond, we introduce FastSwitch, a fairness-aware serving system that not only aligns with existing KV cache memory allocation policy but also mitigates context switching overhead. Our evaluation shows that FastSwitch outperforms the state-of-the-art LLM serving system vLLM with speedups of 1.4-11.2x across different tail TTFT and TBT.
On Optimal Caching and Model Multiplexing for Large Model Inference
Large Language Models (LLMs) and other large foundation models have achieved noteworthy success, but their size exacerbates existing resource consumption and latency challenges. In particular, the large-scale deployment of these models is hindered by the significant resource requirements during inference. In this paper, we study two approaches for mitigating these challenges: employing a cache to store previous queries and learning a model multiplexer to choose from an ensemble of models for query processing. Theoretically, we provide an optimal algorithm for jointly optimizing both approaches to reduce the inference cost in both offline and online tabular settings. By combining a caching algorithm, namely Greedy Dual Size with Frequency (GDSF) or Least Expected Cost (LEC), with a model multiplexer, we achieve optimal rates in both offline and online settings. Empirically, simulations show that the combination of our caching and model multiplexing algorithms greatly improves over the baselines, with up to 50times improvement over the baseline when the ratio between the maximum cost and minimum cost is 100. Experiments on real datasets show a 4.3times improvement in FLOPs over the baseline when the ratio for FLOPs is 10, and a 1.8times improvement in latency when the ratio for average latency is 1.85.
Scaling Laws for Optimal Data Mixtures
Large foundation models are typically trained on data from multiple domains, with the data mixture--the proportion of each domain used--playing a critical role in model performance. The standard approach to selecting this mixture relies on trial and error, which becomes impractical for large-scale pretraining. We propose a systematic method to determine the optimal data mixture for any target domain using scaling laws. Our approach accurately predicts the loss of a model of size N trained with D tokens and a specific domain weight vector h. We validate the universality of these scaling laws by demonstrating their predictive power in three distinct and large-scale settings: large language model (LLM), native multimodal model (NMM), and large vision models (LVM) pretraining. We further show that these scaling laws can extrapolate to new data mixtures and across scales: their parameters can be accurately estimated using a few small-scale training runs, and used to estimate the performance at larger scales and unseen domain weights. The scaling laws allow to derive the optimal domain weights for any target domain under a given training budget (N,D), providing a principled alternative to costly trial-and-error methods.
