Added minum files for the app.
Browse files- app.py +27 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load your model from Hugging Face
|
| 5 |
+
model_name = "CIRCL/vulnerability-severity-classification-roberta-base"
|
| 6 |
+
classifier = pipeline("text-classification", model=model_name, return_all_scores=True)
|
| 7 |
+
|
| 8 |
+
# Define severity labels
|
| 9 |
+
severity_labels = ["Low", "Medium", "High", "Critical"]
|
| 10 |
+
|
| 11 |
+
def classify_text(text):
|
| 12 |
+
results = classifier(text)[0] # Extract the first (and only) result
|
| 13 |
+
scores = {severity_labels[i]: round(r["score"], 4) for i, r in enumerate(results)}
|
| 14 |
+
return scores
|
| 15 |
+
|
| 16 |
+
# Create the Gradio interface
|
| 17 |
+
interface = gr.Interface(
|
| 18 |
+
fn=classify_text,
|
| 19 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter vulnerability description..."),
|
| 20 |
+
outputs=gr.Label(num_top_classes=4), # Display all scores
|
| 21 |
+
title="Vulnerability Severity Classification",
|
| 22 |
+
description="Enter a vulnerability description, and the model will classify its severity level."
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Launch the app
|
| 26 |
+
interface.launch()
|
| 27 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|