MinxuanQin
commited on
Commit
·
6cb5353
1
Parent(s):
502b0e8
first trial with blip
Browse files- app.py +34 -0
- model_loader.py +203 -0
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
sys.path.append(".")
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
from vqa_demo.model_loader import *
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# load dataset
|
| 11 |
+
ds = load_dataset("test")
|
| 12 |
+
|
| 13 |
+
# define selector
|
| 14 |
+
model_name = st.sidebar.selectbox(
|
| 15 |
+
"Select a model: ",
|
| 16 |
+
('vilt', 'git', 'blip', 'vbert')
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
image_selector_unspecific = st.number_input(
|
| 20 |
+
"Select an image id: ",
|
| 21 |
+
0, len(ds)
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# select and display
|
| 25 |
+
sample = ds[image_selector_unspecific]
|
| 26 |
+
image = sample['image']
|
| 27 |
+
image
|
| 28 |
+
|
| 29 |
+
# inference
|
| 30 |
+
question = st.text_input(f"Ask the model a question related to the image: \n"
|
| 31 |
+
f"(e.g. \"{sample['question']}\")")
|
| 32 |
+
args = load_model(model_name) # TODO: cache
|
| 33 |
+
answer = get_answer(args, image, question, model_name)
|
| 34 |
+
st.write("answer")
|
model_loader.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from datasets import load_dataset, get_dataset_split_names
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
import requests
|
| 8 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
| 9 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 10 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering
|
| 11 |
+
from nltk.corpus import wordnet
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
import requests
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
import timm
|
| 17 |
+
|
| 18 |
+
# VLMO: modify in vlmo/config.py: set test_only -> True
|
| 19 |
+
from datasets import load_dataset, get_dataset_split_names
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torchvision
|
| 23 |
+
from torchvision.models import resnet50
|
| 24 |
+
import torchvision.transforms as transforms
|
| 25 |
+
from transformers import VisualBertForMultipleChoice, VisualBertForQuestionAnswering, BertTokenizerFast, AutoTokenizer, ViltForQuestionAnswering
|
| 26 |
+
|
| 27 |
+
from PIL import Image
|
| 28 |
+
from nltk.corpus import wordnet
|
| 29 |
+
import time
|
| 30 |
+
|
| 31 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
VQA_URL = "https://dl.fbaipublicfiles.com/pythia/data/answers_vqa.txt"
|
| 33 |
+
|
| 34 |
+
# load processor and model
|
| 35 |
+
def load_model(name):
|
| 36 |
+
if name == "vilt":
|
| 37 |
+
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
| 38 |
+
model = ViltForQuestionAnswering.from_pretrained("CARETS/vilt_neg_model")
|
| 39 |
+
elif name == "git":
|
| 40 |
+
processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
|
| 42 |
+
elif name == "blip":
|
| 43 |
+
processor = BlipProcessor.from_pretrained('Salesforce/blip-vqa-base')
|
| 44 |
+
model = BlipForQuestionAnswering.from_pretrained('Salesforce/blip-vqa-base')
|
| 45 |
+
elif name == "vbert":
|
| 46 |
+
processor = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 47 |
+
model = VisualBertForQuestionAnswering.from_pretrained("uclanlp/visualbert-vqa")
|
| 48 |
+
else:
|
| 49 |
+
raise ValueError("invalid model name: ", name)
|
| 50 |
+
|
| 51 |
+
return (processor, model)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def load_dataset(type):
|
| 55 |
+
if type == "train":
|
| 56 |
+
return load_dataset("HuggingFaceM4/VQAv2", split="train", streaming=False)
|
| 57 |
+
elif type == "test":
|
| 58 |
+
return load_dataset("HuggingFaceM4/VQAv2", split="validation", streaming=False)
|
| 59 |
+
else:
|
| 60 |
+
raise ValueError("invalid dataset: ", type)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def tokenize_function(examples, processor):
|
| 64 |
+
sample = {}
|
| 65 |
+
sample['inputs'] = processor(images=examples['image'], text=examples['question'], return_tensors="pt")
|
| 66 |
+
sample['outputs'] = examples['multiple_choice_answer']
|
| 67 |
+
return sample
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def label_count_list(labels):
|
| 71 |
+
res = {}
|
| 72 |
+
keys = set(labels)
|
| 73 |
+
for key in keys:
|
| 74 |
+
res[key] = labels.count(key)
|
| 75 |
+
return res
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_item(image, question, tokenizer, image_model, model_name):
|
| 79 |
+
inputs = tokenizer(
|
| 80 |
+
question,
|
| 81 |
+
# padding='max_length',
|
| 82 |
+
# truncation=True,
|
| 83 |
+
# max_length=128,
|
| 84 |
+
return_tensors='pt'
|
| 85 |
+
)
|
| 86 |
+
visual_embeds = get_img_feats(image, image_model=image_model, name=model_name)\
|
| 87 |
+
.squeeze(2, 3).unsqueeze(0)
|
| 88 |
+
visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long)
|
| 89 |
+
visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float)
|
| 90 |
+
upd_dict = {
|
| 91 |
+
"visual_embeds": visual_embeds,
|
| 92 |
+
"visual_token_type_ids": visual_token_type_ids,
|
| 93 |
+
"visual_attention_mask": visual_attention_mask,
|
| 94 |
+
}
|
| 95 |
+
inputs.update(upd_dict)
|
| 96 |
+
|
| 97 |
+
return upd_dict, inputs
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def get_img_feats(image, image_model, new_size=None, name='resnet50'):
|
| 101 |
+
if name == "resnet50":
|
| 102 |
+
image_model = torch.nn.Sequential(*list(image_model.children())[:-1])
|
| 103 |
+
|
| 104 |
+
# apply transforms when necessary
|
| 105 |
+
if new_size is not None:
|
| 106 |
+
transfrom_f = transforms.Resize((new_size, new_size), interpolation=transforms.InterpolationMode.LANCZOS)
|
| 107 |
+
image = transfrom_f(image)
|
| 108 |
+
|
| 109 |
+
transform = transforms.Compose([
|
| 110 |
+
transforms.ToTensor(), # Convert PIL Image back to tensor
|
| 111 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 112 |
+
])
|
| 113 |
+
|
| 114 |
+
# get features
|
| 115 |
+
image = transform(image)
|
| 116 |
+
if name == "resnet50":
|
| 117 |
+
image_features = image_model(image.unsqueeze(0))
|
| 118 |
+
elif name == "vitb16":
|
| 119 |
+
image_features = image_model.forward_features(image.unsqueeze(0))
|
| 120 |
+
return image_features
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def get_data(query, delim=","):
|
| 124 |
+
assert isinstance(query, str)
|
| 125 |
+
if os.path.isfile(query):
|
| 126 |
+
with open(query) as f:
|
| 127 |
+
data = eval(f.read())
|
| 128 |
+
else:
|
| 129 |
+
req = requests.get(query)
|
| 130 |
+
try:
|
| 131 |
+
data = requests.json()
|
| 132 |
+
except Exception:
|
| 133 |
+
data = req.content.decode()
|
| 134 |
+
assert data is not None, "could not connect"
|
| 135 |
+
try:
|
| 136 |
+
data = eval(data)
|
| 137 |
+
except Exception:
|
| 138 |
+
data = data.split("\n")
|
| 139 |
+
req.close()
|
| 140 |
+
return data
|
| 141 |
+
|
| 142 |
+
def err_msg():
|
| 143 |
+
print("Load error, try again")
|
| 144 |
+
return "[ERROR]"
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def get_answer(model_loader_args, img, question, model_name):
|
| 148 |
+
processor, model = model_loader_args[0], model_loader_args[1]
|
| 149 |
+
if model_name == "vilt":
|
| 150 |
+
try:
|
| 151 |
+
encoding = processor(images=img, text=question, return_tensors="pt")
|
| 152 |
+
except Exception:
|
| 153 |
+
return err_msg()
|
| 154 |
+
else:
|
| 155 |
+
outputs = model(**encoding)
|
| 156 |
+
logits = outputs.logits
|
| 157 |
+
idx = logits.argmax(-1).item()
|
| 158 |
+
pred = model.config.id2label[idx]
|
| 159 |
+
|
| 160 |
+
elif model_name == "git":
|
| 161 |
+
try:
|
| 162 |
+
pixel_values = processor(images=img, return_tensors="pt").pixel_values
|
| 163 |
+
input_ids = processor(text=question, add_special_tokens=False).input_ids
|
| 164 |
+
input_ids = [processor.tokenizer.cls_token_id] + input_ids
|
| 165 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
| 166 |
+
except Exception:
|
| 167 |
+
return err_msg()
|
| 168 |
+
else:
|
| 169 |
+
generate_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
|
| 170 |
+
output = processor.batch_decode(generate_ids, skip_special_tokens=True)
|
| 171 |
+
output = output[0]
|
| 172 |
+
pred = output.split('?')[-1]
|
| 173 |
+
pred = pred.strip()
|
| 174 |
+
|
| 175 |
+
elif model_name == "vbert":
|
| 176 |
+
vqa_answers = get_data(VQA_URL)
|
| 177 |
+
try:
|
| 178 |
+
# load question and image (processor = tokenizer)
|
| 179 |
+
_, inputs = get_item(img, question, processor, model_name)
|
| 180 |
+
outputs = model(**inputs)
|
| 181 |
+
except Exception:
|
| 182 |
+
return err_msg()
|
| 183 |
+
else:
|
| 184 |
+
answer_idx = torch.argmax(outputs.logits, dim=1).item() # from 3129
|
| 185 |
+
pred = vqa_answers[answer_idx]
|
| 186 |
+
|
| 187 |
+
elif model_name == "blip":
|
| 188 |
+
try:
|
| 189 |
+
pixel_values = processor(images=img, return_tensors="pt").pixel_values
|
| 190 |
+
blip_ques = processor.tokenizer.cls_token + question
|
| 191 |
+
batch_input_ids = processor(text=blip_ques, add_special_tokens=False).input_ids
|
| 192 |
+
batch_input_ids = torch.tensor(batch_input_ids).unsqueeze(0)
|
| 193 |
+
|
| 194 |
+
generate_ids = model.generate(pixel_values=pixel_values, input_ids=batch_input_ids, max_length=50)
|
| 195 |
+
blip_output = processor.batch_decode(generate_ids, skip_special_tokens=True)
|
| 196 |
+
except Exception:
|
| 197 |
+
return err_msg()
|
| 198 |
+
else:
|
| 199 |
+
pred = blip_output[0]
|
| 200 |
+
else:
|
| 201 |
+
return "Invalid model name"
|
| 202 |
+
|
| 203 |
+
return pred
|