Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 3 |
import torch
|
| 4 |
|
|
|
|
| 5 |
controlnet = ControlNetModel.from_pretrained(
|
| 6 |
"lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16
|
| 7 |
)
|
|
@@ -12,20 +14,22 @@ pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
| 12 |
torch_dtype=torch.float16,
|
| 13 |
safety_checker=None
|
| 14 |
)
|
| 15 |
-
|
| 16 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 17 |
-
pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
|
|
|
|
|
|
|
| 19 |
def generate(image, prompt="a person posing"):
|
|
|
|
| 20 |
result = pipe(prompt=prompt, image=image, num_inference_steps=20).images[0]
|
| 21 |
return result
|
| 22 |
|
| 23 |
demo = gr.Interface(
|
| 24 |
fn=generate,
|
| 25 |
-
inputs=[gr.Image(type="pil"), gr.Textbox(label="Prompt")],
|
| 26 |
outputs="image",
|
| 27 |
title="Pose Generator",
|
| 28 |
description="Upload an image and enter a prompt to generate a ControlNet-based pose output."
|
| 29 |
)
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# Initialize models outside the GPU function
|
| 7 |
controlnet = ControlNetModel.from_pretrained(
|
| 8 |
"lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16
|
| 9 |
)
|
|
|
|
| 14 |
torch_dtype=torch.float16,
|
| 15 |
safety_checker=None
|
| 16 |
)
|
|
|
|
| 17 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
| 18 |
|
| 19 |
+
# Move model to GPU inside the decorated function
|
| 20 |
+
@spaces.GPU(duration=60) # Request GPU for 60 seconds per call
|
| 21 |
def generate(image, prompt="a person posing"):
|
| 22 |
+
pipe.to("cuda")
|
| 23 |
result = pipe(prompt=prompt, image=image, num_inference_steps=20).images[0]
|
| 24 |
return result
|
| 25 |
|
| 26 |
demo = gr.Interface(
|
| 27 |
fn=generate,
|
| 28 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(label="Prompt", value="a person posing")],
|
| 29 |
outputs="image",
|
| 30 |
title="Pose Generator",
|
| 31 |
description="Upload an image and enter a prompt to generate a ControlNet-based pose output."
|
| 32 |
)
|
| 33 |
|
| 34 |
+
if __name__ == "__main__":
|
| 35 |
+
demo.launch()
|