Spaces:
Runtime error
Runtime error
| import torch | |
| import time | |
| from meshgpt_pytorch import ( | |
| MeshTransformer, | |
| mesh_render | |
| ) | |
| import igl | |
| import gradio as gr | |
| import numpy as np | |
| transformer = MeshTransformer.from_pretrained("MarcusLoren/MeshGPT-preview") | |
| def save_as_obj(file_path): | |
| v, f = igl.read_triangle_mesh(file_path) | |
| v, f, _, _ = igl.remove_unreferenced(v, f) | |
| c, _ = igl.orientable_patches(f) | |
| f, _ = igl.orient_outward(v, f, c) | |
| igl.write_triangle_mesh(file_path, v, f) | |
| return file_path | |
| def predict(text, num_input, num_temp): | |
| transformer.eval() | |
| labels = [label.strip() for label in text.split(',')] | |
| output = [] | |
| current_time = time.time() | |
| formatted_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(current_time)) | |
| print(formatted_time, " Input:", text, "num_input", num_input, "num_temp",num_temp) | |
| if num_input > 1: | |
| for label in labels: | |
| output.append((transformer.generate(texts = [label ] * num_input, temperature = num_temp))) | |
| else: | |
| output.append((transformer.generate(texts = labels , temperature = num_temp))) | |
| mesh_render.save_rendering('./render.obj', output) | |
| return save_as_obj('./render.obj') | |
| gradio_app = gr.Interface( | |
| predict, | |
| inputs=[ | |
| gr.Textbox(label="Enter labels, separated by commas"), | |
| gr.Number(value=1, label="Number of examples per input"), | |
| gr.Slider(minimum=0, maximum=1, value=0, label="Temperature (0 to 1)") | |
| ], | |
| outputs=gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), | |
| title="MeshGPT Inference - (Rendering doesn't work, please download for best result)", | |
| ) | |
| if __name__ == "__main__": | |
| gradio_app.launch(share=False) |