Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
+
import torch
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
def load_orca_dataset():
|
| 8 |
+
st.info("Loading dataset... This may take a while.")
|
| 9 |
+
return load_dataset("microsoft/orca-agentinstruct-1M-v1")
|
| 10 |
+
|
| 11 |
+
@st.cache_data
|
| 12 |
+
def load_model_and_tokenizer(model_name):
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 15 |
+
return tokenizer, model
|
| 16 |
+
|
| 17 |
+
def evaluate_model(ds, tokenizer, model, max_samples, text_field):
|
| 18 |
+
st.info("Evaluating the model...")
|
| 19 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
| 20 |
+
|
| 21 |
+
results = []
|
| 22 |
+
for i, example in enumerate(ds):
|
| 23 |
+
if i >= max_samples:
|
| 24 |
+
break
|
| 25 |
+
input_text = example[text_field]
|
| 26 |
+
result = classifier(input_text)[0]
|
| 27 |
+
results.append({"input": input_text, "label": result["label"], "score": result["score"]})
|
| 28 |
+
return results
|
| 29 |
+
|
| 30 |
+
def main():
|
| 31 |
+
st.title("Orca Dataset Browser and Model Evaluator")
|
| 32 |
+
|
| 33 |
+
st.sidebar.header("Configuration")
|
| 34 |
+
load_dataset_btn = st.sidebar.button("Load Dataset")
|
| 35 |
+
|
| 36 |
+
if load_dataset_btn:
|
| 37 |
+
dataset = load_orca_dataset()
|
| 38 |
+
st.session_state["dataset"] = dataset
|
| 39 |
+
|
| 40 |
+
if "dataset" in st.session_state:
|
| 41 |
+
dataset = st.session_state["dataset"]
|
| 42 |
+
|
| 43 |
+
# List available splits
|
| 44 |
+
available_splits = list(dataset.keys())
|
| 45 |
+
st.sidebar.subheader("Available Dataset Splits")
|
| 46 |
+
selected_split = st.sidebar.selectbox("Select Split", available_splits)
|
| 47 |
+
|
| 48 |
+
st.subheader("Dataset Explorer")
|
| 49 |
+
st.write(f"Displaying information for split: `{selected_split}`")
|
| 50 |
+
st.write(dataset[selected_split].info)
|
| 51 |
+
|
| 52 |
+
# Determine available fields
|
| 53 |
+
sample_entry = dataset[selected_split][0]
|
| 54 |
+
st.sidebar.subheader("Available Fields in Dataset")
|
| 55 |
+
available_fields = list(sample_entry.keys())
|
| 56 |
+
st.sidebar.write(available_fields)
|
| 57 |
+
text_field = st.sidebar.selectbox("Select Text Field", available_fields)
|
| 58 |
+
|
| 59 |
+
sample_size = st.slider("Number of Samples to Display", min_value=1, max_value=20, value=5)
|
| 60 |
+
st.write(dataset[selected_split].shuffle(seed=42).select(range(sample_size)))
|
| 61 |
+
|
| 62 |
+
st.subheader("Model Evaluator")
|
| 63 |
+
model_name = st.text_input("Enter Hugging Face Model Name", value="distilbert-base-uncased-finetuned-sst-2-english")
|
| 64 |
+
max_samples = st.number_input("Number of Samples to Evaluate", min_value=1, max_value=100, value=10)
|
| 65 |
+
|
| 66 |
+
if st.button("Load Model and Evaluate"):
|
| 67 |
+
tokenizer, model = load_model_and_tokenizer(model_name)
|
| 68 |
+
|
| 69 |
+
results = evaluate_model(dataset[selected_split].shuffle(seed=42).select(range(max_samples)), tokenizer, model, max_samples, text_field)
|
| 70 |
+
|
| 71 |
+
st.subheader("Evaluation Results")
|
| 72 |
+
st.write(results)
|
| 73 |
+
|
| 74 |
+
st.download_button(
|
| 75 |
+
label="Download Results as CSV",
|
| 76 |
+
data=pd.DataFrame(results).to_csv(index=False),
|
| 77 |
+
file_name="evaluation_results.csv",
|
| 78 |
+
mime="text/csv",
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
if __name__ == "__main__":
|
| 82 |
+
main()
|