Spaces:
Sleeping
Sleeping
File size: 9,588 Bytes
e321b92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import scipy
import scipy.sparse
import scipy.sparse.linalg
from scipy.io import loadmat
import sys
import os
import os.path as osp
import math
import numpy as np
import open3d as o3d
import potpourri3d as pp3d
import torch
from pathlib import Path
class CorrLoader(object):
def __init__(self, root_dir, data_type='mat'):
self.root_dir = root_dir
self.data_type = data_type
def get_by_names(self, sname0, sname1):
if self.data_type.endswith('mat'):
pmap10 = self._load_mat(osp.join(self.root_dir, f'{sname0}-{sname1}.mat'))
return np.stack((pmap10, np.arange(len(pmap10))), axis=1)
else:
raise RuntimeError(f'Data type {self.data_type} is not supported.')
def _load_mat(self, filepath):
data = loadmat(filepath)
pmap10 = np.squeeze(np.asarray(data['pmap10'], dtype=np.int32))
return pmap10
# https://github.com/RobinMagnet/pyFM/blob/master/pyFM/signatures/HKS_functions.py
def HKS(evals, evects, time_list, scaled=False):
evals_s = np.asarray(evals).flatten()
t_list = np.asarray(time_list).flatten()
coefs = np.exp(-np.outer(t_list, evals_s))
weighted_evects = evects[None, :, :] * coefs[:, None, :]
natural_HKS = np.einsum('tnk,nk->nt', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
return (1 / inv_scaling)[None, :] * natural_HKS
else:
return natural_HKS
def lm_HKS(evals, evects, landmarks, time_list, scaled=False):
evals_s = np.asarray(evals).flatten()
t_list = np.asarray(time_list).flatten()
coefs = np.exp(-np.outer(t_list, evals_s))
weighted_evects = evects[None, landmarks, :] * coefs[:, None, :]
landmarks_HKS = np.einsum('tpk,nk->ptn', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
landmarks_HKS = (1 / inv_scaling)[None, :, None] * landmarks_HKS
return landmarks_HKS.reshape(-1, evects.shape[0]).T
def auto_HKS(evals, evects, num_T, landmarks=None, scaled=True):
abs_ev = sorted(np.abs(evals))
t_list = np.geomspace(4 * np.log(10) / abs_ev[-1], 4 * np.log(10) / abs_ev[1], num_T)
if landmarks is None:
return HKS(abs_ev, evects, t_list, scaled=scaled)
else:
return lm_HKS(abs_ev, evects, landmarks, t_list, scaled=scaled)
# https://github.com/RobinMagnet/pyFM/blob/master/pyFM/signatures/WKS_functions.py
def WKS(evals, evects, energy_list, sigma, scaled=False):
assert sigma > 0, f"Sigma should be positive ! Given value : {sigma}"
evals = np.asarray(evals).flatten()
indices = np.where(evals > 1e-5)[0].flatten()
evals = evals[indices]
evects = evects[:, indices]
e_list = np.asarray(energy_list)
coefs = np.exp(-np.square(e_list[:, None] - np.log(np.abs(evals))[None, :]) / (2 * sigma**2))
weighted_evects = evects[None, :, :] * coefs[:, None, :]
natural_WKS = np.einsum('tnk,nk->nt', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
return (1 / inv_scaling)[None, :] * natural_WKS
else:
return natural_WKS
def lm_WKS(evals, evects, landmarks, energy_list, sigma, scaled=False):
assert sigma > 0, f"Sigma should be positive ! Given value : {sigma}"
evals = np.asarray(evals).flatten()
indices = np.where(evals > 1e-2)[0].flatten()
evals = evals[indices]
evects = evects[:, indices]
e_list = np.asarray(energy_list)
coefs = np.exp(-np.square(e_list[:, None] - np.log(np.abs(evals))[None, :]) / (2 * sigma**2))
weighted_evects = evects[None, landmarks, :] * coefs[:, None, :]
landmarks_WKS = np.einsum('tpk,nk->ptn', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
landmarks_WKS = ((1 / inv_scaling)[None, :, None] * landmarks_WKS)
return landmarks_WKS.reshape(-1, evects.shape[0]).T
def auto_WKS(evals, evects, num_E, landmarks=None, scaled=True):
abs_ev = sorted(np.abs(evals))
e_min, e_max = np.log(abs_ev[1]), np.log(abs_ev[-1])
sigma = 7 * (e_max - e_min) / num_E
e_min += 2 * sigma
e_max -= 2 * sigma
energy_list = np.linspace(e_min, e_max, num_E)
if landmarks is None:
return WKS(abs_ev, evects, energy_list, sigma, scaled=scaled)
else:
return lm_WKS(abs_ev, evects, landmarks, energy_list, sigma, scaled=scaled)
def compute_hks(evecs, evals, mass, n_descr=100, subsample_step=5, n_eig=35):
feats = auto_HKS(evals[:n_eig], evecs[:, :n_eig], n_descr, scaled=True)
feats = feats[:, np.arange(0, feats.shape[1], subsample_step)]
feats_norm2 = np.einsum('np,np->p', feats, np.expand_dims(mass, 1) * feats).flatten()
feats /= np.expand_dims(np.sqrt(feats_norm2), 0)
return feats.astype(np.float32)
def compute_wks(evecs, evals, mass, n_descr=100, subsample_step=5, n_eig=35):
feats = auto_WKS(evals[:n_eig], evecs[:, :n_eig], n_descr, scaled=True)
feats = feats[:, np.arange(0, feats.shape[1], subsample_step)]
feats_norm2 = np.einsum('np,np->p', feats, np.expand_dims(mass, 1) * feats).flatten()
feats /= np.expand_dims(np.sqrt(feats_norm2), 0)
return feats.astype(np.float32)
def compute_geodesic_distance(V, F, vindices):
solver = pp3d.MeshHeatMethodDistanceSolver(np.asarray(V, dtype=np.float32), np.asarray(F, dtype=np.int32))
dists = [solver.compute_distance(vid)[vindices] for vid in vindices]
dists = np.stack(dists, axis=0)
assert dists.ndim == 2
return dists.astype(np.float32)
def compute_vertex_normals(vertices, faces):
mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces))
mesh.compute_vertex_normals()
return np.asarray(mesh.vertex_normals, dtype=np.float32)
def compute_surface_area(vertices, faces):
mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces))
return mesh.get_surface_area()
def numpy_to_open3d_mesh(V, F):
# Create an empty TriangleMesh object
mesh = o3d.geometry.TriangleMesh()
# Set vertices
mesh.vertices = o3d.utility.Vector3dVector(V)
# Set triangles
mesh.triangles = o3d.utility.Vector3iVector(F)
return mesh
def load_mesh(filepath, scale=True, return_vnormals=False):
if os.path.splitext(filepath)[1] == ".obj": #Avoid pre process from open3d
V, F = pp3d.read_mesh(filepath)
mesh = numpy_to_open3d_mesh(V, F)
else:
mesh = o3d.io.read_triangle_mesh(filepath)
tmat = np.identity(4, dtype=np.float32)
center = mesh.get_center()
tmat[:3, 3] = -center
if scale:
smat = np.identity(4, dtype=np.float32)
area = mesh.get_surface_area()
smat[:3, :3] = np.identity(3, dtype=np.float32) / math.sqrt(area)
tmat = smat @ tmat
mesh.transform(tmat)
vertices = np.asarray(mesh.vertices, dtype=np.float32)
faces = np.asarray(mesh.triangles, dtype=np.int32)
if return_vnormals:
mesh.compute_vertex_normals()
vnormals = np.asarray(mesh.vertex_normals, dtype=np.float32)
return vertices, faces, vnormals
else:
return vertices, faces
def save_mesh(filepath, vertices, faces):
mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces))
o3d.io.write_triangle_mesh(filepath, mesh)
def load_geodist(filepath):
data = loadmat(filepath)
if 'geodist' in data and 'sqrt_area' in data:
geodist = np.asarray(data['geodist'], dtype=np.float32)
sqrt_area = data['sqrt_area'].toarray().flatten()[0]
elif 'G' in data and 'SQRarea' in data:
geodist = np.asarray(data['G'], dtype=np.float32)
sqrt_area = data['SQRarea'].flatten()[0]
else:
raise RuntimeError(f'File {filepath} does not have geodesics data.')
return geodist, sqrt_area
def farthest_point_sampling(points, max_points, random_start=True):
import torch_cluster
if torch.is_tensor(points):
device = points.device
is_batch = points.dim() == 3
if not is_batch:
points = torch.unsqueeze(points, dim=0)
assert points.dim() == 3
B, N, D = points.size()
assert N >= max_points
bindices = torch.flatten(torch.unsqueeze(torch.arange(B), 1).repeat(1, N)).long().to(device)
points = torch.reshape(points, (B * N, D)).float()
sindices = torch_cluster.fps(points, bindices, ratio=float(max_points) / N, random_start=random_start)
if is_batch:
sindices = torch.reshape(sindices, (B, max_points)) - torch.unsqueeze(torch.arange(B), 1).long().to(device) * N
elif isinstance(points, np.ndarray):
device = torch.device('cpu')
is_batch = points.ndim == 3
if not is_batch:
points = np.expand_dims(points, axis=0)
assert points.ndim == 3
B, N, D = points.shape
assert N >= max_points
bindices = np.tile(np.expand_dims(np.arange(B), 1), (1, N)).flatten()
bindices = torch.as_tensor(bindices, device=device).long()
points = torch.as_tensor(np.reshape(points, (B * N, D)), device=device).float()
sindices = torch_cluster.fps(points, bindices, ratio=float(max_points) / N, random_start=random_start)
sindices = sindices.cpu().numpy()
if is_batch:
sindices = np.reshape(sindices, (B, max_points)) - np.expand_dims(np.arange(B), 1) * N
else:
raise NotImplementedError
return sindices
def lstsq(A, B):
assert A.ndim == B.ndim == 2
sols = scipy.linalg.lstsq(A, B)[0]
return sols
|