File size: 22,645 Bytes
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6a975
c5cb8fa
458efe2
 
c5cb8fa
458efe2
 
 
 
 
 
 
 
c5cb8fa
 
 
 
 
 
 
458efe2
 
 
c5cb8fa
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
c5cb8fa
458efe2
 
cddf12c
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cb8fa
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ce39e
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cb8fa
458efe2
 
20ce39e
458efe2
20ce39e
 
458efe2
 
c5cb8fa
 
458efe2
 
 
20ce39e
458efe2
 
 
20ce39e
 
458efe2
c5cb8fa
20ce39e
c5cb8fa
458efe2
 
 
c5cb8fa
 
458efe2
 
 
 
 
 
 
c5cb8fa
458efe2
 
 
 
 
 
 
20ce39e
 
458efe2
c5cb8fa
458efe2
 
 
c5cb8fa
 
 
458efe2
 
c5cb8fa
 
458efe2
 
 
c5cb8fa
 
458efe2
 
 
c5cb8fa
 
 
458efe2
 
 
c5cb8fa
 
458efe2
 
 
c5cb8fa
 
 
 
 
 
 
 
 
20ce39e
458efe2
c5cb8fa
458efe2
 
 
 
 
 
 
c5cb8fa
 
 
20ce39e
458efe2
 
 
 
 
c5cb8fa
 
20ce39e
458efe2
 
c5cb8fa
 
 
 
458efe2
20ce39e
c5cb8fa
20ce39e
c5cb8fa
458efe2
c5cb8fa
 
 
 
 
458efe2
 
c5cb8fa
 
 
 
 
 
20ce39e
458efe2
c5cb8fa
458efe2
c5cb8fa
458efe2
c5cb8fa
458efe2
c5cb8fa
458efe2
c5cb8fa
458efe2
c5cb8fa
458efe2
 
 
 
c5cb8fa
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cb8fa
458efe2
 
 
 
 
 
c5cb8fa
 
458efe2
 
 
 
 
 
 
 
c5cb8fa
 
458efe2
 
 
 
c5cb8fa
458efe2
 
 
 
 
 
 
c5cb8fa
 
458efe2
 
c5cb8fa
 
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cb8fa
 
458efe2
c5cb8fa
 
458efe2
 
c5cb8fa
458efe2
 
 
 
 
 
c5cb8fa
 
458efe2
c5cb8fa
 
458efe2
 
 
 
 
c5cb8fa
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
c5cb8fa
458efe2
 
 
 
c5cb8fa
458efe2
c5cb8fa
 
458efe2
 
 
 
 
 
 
 
 
c5cb8fa
458efe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5cb8fa
 
 
458efe2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import torch
import numpy as np
import scipy
import os
import sys
import random
import numpy as np
import torch
import time
from datetime import datetime
import importlib
import json
import argparse
from omegaconf import OmegaConf
from snk.loss import PrismRegularizationLoss
from snk.prism_decoder import PrismDecoder
from shape_models.fmap import DFMNet
from shape_models.encoder import Encoder
from diffu_models.losses import VELoss, VPLoss, EDMLoss
from diffu_models.sds import guidance_grad
from utils.torch_fmap import torch_zoomout, knnsearch, extract_p2p_torch_fmap
from utils.utils_func import convert_dict, str_delta, ensure_pretrained_file
from utils.eval import accuracy
from utils.mesh import save_ply, load_mesh
from shape_data import get_data_dirs
from utils.pickle_stuff import safe_load_with_fallback
from utils.geometry import compute_operators, load_operators
from utils.surfaces import Surface
import sys
import spaces

try:
    import google.colab

    print("Running Colab")
    from tqdm import tqdm
except ImportError:
    print("Running local")
    from tqdm.auto import tqdm


def seed_everything(seed=42):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


seed_everything()


class Tee:
    def __init__(self, *outputs):
        self.outputs = outputs

    def write(self, message):
        for output in self.outputs:
            output.write(message)
            output.flush()  # ensure it's written immediately

    def flush(self):
        for output in self.outputs:
            output.flush()


class DiffModel:

    def __init__(self, cfg, device="cpu"):
        if cfg["train_dir"] == "pretrained":
            url = "https://huggingface.co/daidedou/diffumatch_model/resolve/main/network-snapshot-041216.pkl"
            network_pkl = ensure_pretrained_file(url, "pretrained")
            url_json = "https://huggingface.co/daidedou/diffumatch_model/resolve/main/training_options.json"
            json_filename = ensure_pretrained_file(url_json, "pretrained", filename="training_options.json")
            train_cfg = json.load(open(json_filename))
        else:
            num_exp = cfg["diff_num_exp"]
            files = os.listdir(cfg["train_dir"])
            for file in files:
                if file[:5] == f"{num_exp:05d}":
                    netdir = os.path.join(cfg["train_dir"], file)
            train_cfg = json.load(open(os.path.join(netdir, "training_options.json")))
            pkls = [f for f in os.listdir(netdir) if ".pkl" in f]
            nice_pkls = sorted(pkls, key=lambda x: int(x.split(".")[0].split("-")[-1]))
            chosen_pkl = nice_pkls[-1]
            network_pkl = os.path.join(netdir, chosen_pkl)
        print(f'Loading network from "{network_pkl}"...')
        self.net = safe_load_with_fallback(network_pkl)['ema'].to(device)

        print('Done!')
        loss_name = train_cfg['hyper_params']['loss_name']
        self.loss_sde = None
        if loss_name == "EDMLoss":
            self.loss_sde = EDMLoss()
        elif loss_name == "VPLoss":
            self.loss_sde = VPLoss()


class Matcher(object):

    def __init__(self, cfg):
        self.cfg = cfg
        self.diffusion_model = None
        if self.cfg.get("sds", False):
            self.diffusion_model = DiffModel(cfg["sds_conf"], "cpu")
        self.n_fmap = self.cfg["deepfeat_conf"]["fmap"]["n_fmap"]
        self.n_loop = 0
        if self.cfg.get("optimize", False):
            self.n_loop = self.cfg.opt.get("n_loop", 0)
        self.snk = self.cfg.get("snk", False)
        self.fmap_cfg = self.cfg.deepfeat_conf.fmap
        self.dataloaders = dict()

    def reconf(self, cfg):
        self.cfg = cfg
        self.n_fmap = self.cfg["deepfeat_conf"]["fmap"]["n_fmap"]
        self.n_loop = 0
        if self.cfg.get("optimize", False):
            self.n_loop = self.cfg.opt.get("n_loop", 0)
        self.fmap_cfg = self.cfg.deepfeat_conf.fmap
        self.dataloaders = dict()

    def _init(self):
        cfg = self.cfg
        self.fmap_model = DFMNet(self.cfg["deepfeat_conf"]["fmap"]).cuda()
        if self.snk:
            self.encoder = Encoder().cuda()
            self.decoder = PrismDecoder(dim_in=515).cuda()
            self.loss_prism = PrismRegularizationLoss(primo_h=0.02)
            self.soft_p2p = True
            params_to_opt = list(self.fmap_model.parameters()) + list(self.encoder.parameters()) + list(
                self.decoder.parameters())
        else:
            params_to_opt = self.fmap_model.parameters()
        self.optim = torch.optim.Adam(params_to_opt, lr=0.001, betas=(0.9, 0.99))
        self.eye = torch.eye(self.n_fmap).float().cuda()
        self.eye.requires_grad = False

    def fmap(self, shape_dict, target_dict):
        diff_model_cuda = self.diffusion_model
        diff_model_cuda.net.cuda()
        if self.fmap_cfg.get("use_diff", False):
            C12_pred, C21_pred, feat1, feat2, evecs_trans1, evecs_trans2 = self.fmap_model(
                {"shape1": shape_dict, "shape2": target_dict}, diff_model=diff_model_cuda,
                scale=self.fmap_cfg.diffusion.time)
            C12_pred, C12_obj, mask_12 = C12_pred
            C21_pred, C21_obj, mask_21 = C21_pred
        else:
            C12_pred, C21_pred, feat1, feat2, evecs_trans1, evecs_trans2 = self.fmap_model(
                {"shape1": shape_dict, "shape2": target_dict})
            C12_obj, C21_obj = C12_pred, C21_pred
            mask_12, mask_21 = None, None
        return C12_pred, C12_obj, C21_pred, C21_obj, feat1, feat2, evecs_trans1, evecs_trans2, mask_12, mask_21

    def zo_shot(self, shape_dict, target_dict):
        self._init()
        evecs1, evecs2 = shape_dict["evecs"], target_dict["evecs"]
        _, C12_mask_init, _, _, _, _, _, _, _, _ = self.fmap(shape_dict, target_dict)
        evecs_2trans = evecs2.t() @ torch.diag(target_dict["mass"])
        new_FM = torch_zoomout(evecs1, evecs2, evecs_2trans, C12_mask_init.squeeze(), self.cfg["zo_shot"])
        indKNN_new, _ = extract_p2p_torch_fmap(new_FM, evecs1, evecs2)
        return new_FM, indKNN_new

    def optimize(self, shape_dict, target_dict, target_normals):
        self._init()
        diff_model_cuda = self.diffusion_model
        diff_model_cuda.net.cuda()
        evecs1, evecs2 = shape_dict["evecs"], target_dict["evecs"]
        C12_pred_init, _, _, _, _, _, evecs_trans1, evecs_trans2, _, _ = self.fmap(shape_dict, target_dict)
        evecs_2trans = evecs2.t() @ torch.diag(target_dict["mass"])
        evecs_1trans = evecs1.t() @ torch.diag(shape_dict["mass"])
        n_verts_target = target_dict["vertices"].shape[-2]

        loss_save = {"cycle": [], "fmap": [], "mse": [], "prism": [], "bij": [], "ortho": [], "sds": [], "lap": [],
                     "proper": []}
        snk_rec = None
        for i in tqdm(range(self.n_loop), "Optimizing matching " + shape_dict['name'] + " " + target_dict['name']):
            C12_pred, C12_obj, C21_pred, C21_obj, feat1, feat2, evecs_trans1, evecs_trans2, _, _ = self.fmap(shape_dict,
                                                                                                             target_dict)
            if self.cfg.opt.soft_p2p:
                ### A la SNK
                ## P2P 2 -> 1
                soft_p2p_21 = knnsearch(evecs2[:, :self.n_fmap] @ C12_pred.squeeze(), evecs1[:, :self.n_fmap],
                                        prod=True)
                C12_new = evecs_trans2[:self.n_fmap, :] @ soft_p2p_21 @ evecs1[:, :self.n_fmap]
                soft_p2p_21 = knnsearch(evecs2[:, :self.n_fmap] @ C12_new.squeeze(), evecs1[:, :self.n_fmap], prod=True)

                ## P2P 1 -> 2
                soft_p2p_12 = knnsearch(evecs1[:, :self.n_fmap] @ C21_pred.squeeze(), evecs2[:, :self.n_fmap],
                                        prod=True)
                C21_new = evecs_trans1[:self.n_fmap, :] @ soft_p2p_12 @ evecs2[:, :self.n_fmap]
                soft_p2p_12 = knnsearch(evecs1[:, :self.n_fmap] @ C21_new.squeeze(), evecs2[:, :self.n_fmap], prod=True)

                l_cycle = ((soft_p2p_12 @ (soft_p2p_21 @ shape_dict["vertices"]) - shape_dict["vertices"]) ** 2).sum(
                    dim=-1).mean()
            else:
                C12_new, C21_new = C12_pred, C21_pred

            l_ortho = ((C12_new.squeeze() @ C12_new.squeeze().T - self.eye) ** 2).mean() + (
                        (C21_new.squeeze() @ C21_new.squeeze().T - self.eye) ** 2).mean()
            l_bij = ((C12_new.squeeze() @ C21_new.squeeze() - self.eye) ** 2).mean() + (
                        (C21_new.squeeze() @ C12_new.squeeze() - self.eye) ** 2).mean()
            l_lap = ((C12_new @ torch.diag(shape_dict["evals"][:self.n_fmap]) - torch.diag(
                target_dict["evals"][:self.n_fmap]) @ C12_new) ** 2).mean()
            l_lap += ((C21_new @ torch.diag(target_dict["evals"][:self.n_fmap]) - torch.diag(
                shape_dict["evals"][:self.n_fmap]) @ C21_new) ** 2).mean()

            l_cycle, l_prism, l_mse = torch.as_tensor(0.).float().cuda(), torch.as_tensor(0.).float().cuda(), torch.as_tensor(0.).float().cuda()
            if self.snk:
                # Latent vector
                latents = self.encoder(shape_dict)
                latents_duplicate = latents[None, :].repeat(n_verts_target, 1)

                # Prism decoder
                feats_decode = torch.cat((target_dict["vertices"], latents_duplicate), dim=1)
                snk_rec, prism, rots = self.decoder(target_dict, feats_decode)
                l_prism = self.loss_prism(prism, rots, target_dict["vertices"], target_dict["faces"], target_normals)
                l_mse = ((soft_p2p_21 @ shape_dict["vertices"] - snk_rec) ** 2).sum(dim=-1).mean()
                l_cycle = ((soft_p2p_12 @ (soft_p2p_21 @ shape_dict["vertices"]) - shape_dict["vertices"]) ** 2).sum(
                    dim=-1).mean()
            l_sds, l_proper = torch.as_tensor(0.).float().cuda(), torch.as_tensor(0.).float().cuda()
            if self.fmap_cfg.get("use_diff", False):
                if self.fmap_cfg.diffusion.get("abs", False):
                    C12_in, C21_in = torch.abs(C12_pred).squeeze(), torch.abs(C21_pred).squeeze()
                else:
                    C12_in, C21_in = C12_pred.squeeze(), C21_pred.squeeze()
                grad_12, _ = guidance_grad(C12_in, self.diffusion_model.net, grad_scale=1,
                                           batch_size=self.fmap_cfg.diffusion.batch_sds,
                                           scale_noise=self.fmap_cfg.diffusion.time, device="cuda")
                with torch.no_grad():
                    denoised_12 = C12_pred - self.optim.param_groups[0]['lr'] * grad_12
                targets_12 = torch_zoomout(evecs1, evecs2, evecs_2trans, C12_obj.squeeze(), self.cfg.sds_conf.zoomout)

                l_proper_12 = ((C12_pred.squeeze()[:self.n_fmap, :self.n_fmap] - targets_12.squeeze()[:self.n_fmap,
                                                                                 :self.n_fmap]) ** 2).mean()

                grad_21, _ = guidance_grad(C21_in, diff_model_cuda.net, grad_scale=1,
                                           batch_size=self.fmap_cfg.diffusion.batch_sds,
                                           scale_noise=self.fmap_cfg.diffusion.time, device="cuda")
                # denoised_21 = C21_pred - self.optim.param_groups[0]['lr'] * grad_21
                with torch.no_grad():
                    denoised_21 = C21_pred - self.optim.param_groups[0]['lr'] * grad_21
                targets_21 = torch_zoomout(evecs2, evecs1, evecs_1trans, C21_obj.squeeze(),
                                           self.cfg.sds_conf.zoomout)  # , step=10)
                l_proper_21 = ((C21_pred.squeeze()[:self.n_fmap, :self.n_fmap] - targets_21.squeeze()[:self.n_fmap,
                                                                                 :self.n_fmap]) ** 2).mean()
                l_proper = l_proper_12 + l_proper_21

                l_sds = ((torch.abs(C12_pred).squeeze()[:self.n_fmap, :self.n_fmap] - denoised_12.squeeze()[
                                                                                      :self.n_fmap,
                                                                                      :self.n_fmap]) ** 2).mean()
                l_sds += ((torch.abs(C21_pred).squeeze()[:self.n_fmap, :self.n_fmap] - denoised_21.squeeze()[
                                                                                       :self.n_fmap,
                                                                                       :self.n_fmap]) ** 2).mean()
            loss = torch.as_tensor(0.).float().to("cuda")
            if self.cfg.loss.get("ortho", 0) > 0:
                loss += self.cfg.loss.get("ortho", 0) * l_ortho
            if self.cfg.loss.get("bij", 0) > 0:
                loss += self.cfg.loss.get("bij", 0) * l_bij
            if self.cfg.loss.get("lap", 0) > 0:
                loss += self.cfg.loss.get("lap", 0) * l_lap
            if self.cfg.loss.get("cycle", 0) > 0:
                loss += self.cfg.loss.get("cycle", 0) * l_cycle
            if self.cfg.loss.get("mse_rec", 0) > 0:
                loss += self.cfg.loss.get("mse_rec", 0) * l_mse
            if self.cfg.loss.get("prism_rec", 0) > 0:
                loss += self.cfg.loss.get("prism_rec", 0) * l_prism
            if self.cfg.loss.get("sds", 0) > 0 and self.fmap_cfg.get("use_diff", False):
                loss += self.cfg.loss.get("sds", 0) * l_sds
            if self.cfg.loss.get("proper", 0) > 0 and self.fmap_cfg.get("use_diff", False):
                loss += self.cfg.loss.get("proper", 0) * l_proper

            loss.backward()
            self.optim.step()
            self.optim.zero_grad()

            loss_save["cycle"].append(l_cycle.item())
            loss_save["ortho"].append(l_ortho.item())
            loss_save["bij"].append(l_bij.item())
            loss_save["sds"].append(l_sds.item())
            loss_save["proper"].append(l_proper.item())
            loss_save["mse"].append(l_mse.item())
            loss_save["prism"].append(l_prism.item())
        indKNN_new_init, _ = extract_p2p_torch_fmap(C12_pred_init, evecs1, evecs2)
        indKNN_new, _ = extract_p2p_torch_fmap(C12_new, evecs1, evecs2)
        return C12_new, indKNN_new, indKNN_new_init, snk_rec, loss_save

    def match(self, pair_batch, output_pair, geod_path, refine=True, eval=False):
        shape_dict, _, target_dict, _, target_normals, mapinfo = pair_batch
        shape_dict_device = convert_dict(shape_dict, self.device)
        target_dict_device = convert_dict(target_dict, self.device)
        print(shape_dict_device["vertices"].device)
        os.makedirs(output_pair, exist_ok=True)

        if self.cfg["optimize"]:
            C12_new, p2p, p2p_init, snk_rec, loss_save = self.optimize(shape_dict_device, target_dict_device,
                                                                       target_normals.to(self.device))
            np.save(os.path.join(output_pair, "p2p_init.npy"), p2p_init)
            np.save(os.path.join(output_pair, "losses.npy"), loss_save)
        else:
            C12_new, p2p = self.zo_shot(shape_dict_device, target_dict_device)
            snk_rec, loss_save = None, None
        np.save(os.path.join(output_pair, "fmap.npy"), C12_new.detach().squeeze().cpu().numpy())
        np.save(os.path.join(output_pair, "p2p.npy"), p2p)
        if snk_rec is not None:
            save_ply(os.path.join(output_pair, "rec.ply"), snk_rec.detach().squeeze().cpu().numpy(),
                     target_dict["faces"])

        if refine:
            evecs1, evecs2 = shape_dict_device["evecs"], target_dict_device["evecs"]
            evecs_2trans = evecs2.t() @ torch.diag(target_dict_device["mass"])
            new_FM = torch_zoomout(evecs1, evecs2, evecs_2trans, C12_new.squeeze(), 128)  # , step=10)
            p2p_refined_zo, _ = extract_p2p_torch_fmap(new_FM, evecs1, evecs2)
            np.save(os.path.join(output_pair, "p2p_zo.npy"), p2p)
        if eval:
            file_i, vts_1, vts_2 = mapinfo
            mat_loaded = scipy.io.loadmat(os.path.join(geod_path, file_i + ".mat"))
            A_geod, sqrt_area = mat_loaded['geod_dist'], np.sqrt(mat_loaded['areas_f'].sum())
            _, dist = accuracy(p2p[vts_2], vts_1, A_geod,
                               sqrt_area=sqrt_area,
                               return_all=True)
            if refine:
                _, dist_zo = accuracy(p2p_refined_zo[vts_2], vts_1, A_geod,
                                      sqrt_area=sqrt_area,
                                      return_all=True)
                np.savetxt(os.path.join(output_pair, "dists.txt"), (dist.mean(), dist_zo.mean()))
                return p2p, p2p_refined_zo, loss_save, dist.mean(), dist_zo.mean()
            return p2p, loss_save, dist.mean()
        return p2p, loss_save

    def _dataset_epoch(self, dataset, name_dataset, save_dir, data_dir):
        os.makedirs(save_dir, exist_ok=True)
        # dloader = DataLoader(dataset, collate_fn=collate_default, batch_size=1)
        num_pairs = len(dataset)
        id_pair = 0
        all_accs = []
        all_accs_zo = []
        t1 = datetime.now()
        save_txt = os.path.join(save_dir, "log.txt")
        # Open a file for writing
        log_file = open(save_txt, 'w')
        # Replace sys.stdout with Tee that writes to both console and file
        sys.stdout = Tee(sys.__stdout__, log_file)

        for batch in dset:
            shape_dict, _, target_dict, _, _, _ = batch
            print("Pair: " + shape_dict['name'] + " " + target_dict['name'])
            name_exp = os.path.join(save_dir, shape_dict['name'], target_dict['name'])
            if self.cfg.get("refine", False):
                _, _, _, dist, dist_zo = self.match(batch, name_exp, os.path.join(data_dir, "geomats", name_dataset),
                                                    eval=True, refine=True)
            else:
                _, _, dist = self.match(batch, name_exp, os.path.join(data_dir, "geomats", name_dataset), eval=True,
                                        refine=False)
            delta = datetime.now() - t1
            fm_delta = str_delta(delta)
            remains = ((delta / (id_pair + 1)) * num_pairs) - delta
            fm_remains = str_delta(remains)
            all_accs.append(dist)
            accs_mean = np.mean(all_accs)
            if self.cfg.get("refine", False):
                all_accs_zo.append(dist_zo)
                accs_zo = np.mean(all_accs_zo)
                print(
                    f"error: {dist}, zo: {dist_zo}, element {id_pair}/{num_pairs}, mean accuracy: {accs_mean}, mean zo: {accs_zo}, full time: {fm_delta}, remains: {fm_remains}")
            else:
                print(
                    f"error: {dist}, element {id_pair}/{num_pairs}, mean accuracy: {accs_mean}, full time: {fm_delta}, remains: {fm_remains}")
            id_pair += 1
        if self.cfg.get("refine", False):
            print(f"mean error : {np.mean(all_accs)}, mean error refined: {np.mean(all_accs_zo)}")
        else:
            print(f"mean error : {np.mean(all_accs)}")
        sys.stdout = sys.__stdout__

    def load_data(self, file, num_evecs=200, make_cache=False, factor=None):
        name = os.path.basename(os.path.splitext(file)[0])
        cache_file = "single_" + name + ".npz"
        verts_shape, faces, vnormals, area_shape, center_shape = load_mesh(file, return_vnormals=True)
        cache_path = os.path.join(self.cfg.cache, cache_file)
        print("Cache is: ", cache_path)
        if not os.path.exists(cache_path) or make_cache:
            print("Computing operators ...")
            compute_operators(verts_shape, faces, vnormals, num_evecs, cache_path, force_save=make_cache)
        data_dict = load_operators(cache_path)
        data_dict['name'] = name
        data_dict_torch = convert_dict(data_dict, self.device)
        # batchify_dict(data_dict_torch)
        return data_dict_torch, area_shape

    def match_files(self, file_shape, file_target):
        batch_shape, _ = self.load_data(file_shape)
        batch_target, _ = self.load_data(file_target)
        target_surf = Surface(filename=file_target)
        target_normals = torch.from_numpy(
            target_surf.surfel / np.linalg.norm(target_surf.surfel, axis=-1, keepdims=True)).float().to(self.device)
        batch = batch_shape, None, batch_target, target_normals, None, None
        output_folder = os.path.join(self.cfg.output, batch_shape["name"] + "_" + batch_shape["target"])
        p2p, _ = self.match(batch, output_folder, None)
        return batch_shape, batch_target, p2p


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Launch the SDS demo over datasets")
    parser.add_argument('--dataset', type=str, default="SCAPE", help='name of the dataset')
    parser.add_argument('--config', type=str, default="config/matching/sds.yaml", help='Config file location')
    parser.add_argument('--datadir', type=str, default="data", help='path where datasets are store')
    parser.add_argument('--output', type=str, default="results", help="where to store experience results")
    args = parser.parse_args()

    arg_cfg = OmegaConf.from_dotlist(
        [f"{k}={v}" for k, v in vars(args).items() if v is not None]
    )
    yaml_cfg = OmegaConf.load(args.config)
    cfg = OmegaConf.merge(yaml_cfg, arg_cfg)
    dataset_name = args.dataset.lower()
    if cfg.get("oriented", False):
        dataset_name += "_ori"
    shape_cls = getattr(importlib.import_module(f'shape_data.{args.dataset.lower()}'), 'ShapeDataset')
    pair_cls = getattr(importlib.import_module(f'shape_data.{args.dataset.lower()}'), 'ShapePairDataset')
    data_dir, name_data_geo, corr_dir = get_data_dirs(args.datadir, dataset_name, 'test')
    name_data_geo = "_".join(name_data_geo.split("_")[:2])
    dset_shape = shape_cls(data_dir, "cache/fmaps", "test", oriented=cfg.get("oriented", False))
    print("Preprocessing shapes done.")
    dset = pair_cls(corr_dir, 'test', dset_shape, rotate=cfg.get("rotate", False))
    exp_time = time.strftime('%y-%m-%d_%H-%M-%S')
    output_logs = os.path.join(args.output, name_data_geo, exp_time)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    matcher = Matcher(cfg, device)
    matcher._dataset_epoch(dset, name_data_geo, output_logs, args.datadir)