Spaces:
Sleeping
Sleeping
File size: 22,645 Bytes
458efe2 ad6a975 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 cddf12c 458efe2 c5cb8fa 458efe2 20ce39e 458efe2 c5cb8fa 458efe2 20ce39e 458efe2 20ce39e 458efe2 c5cb8fa 458efe2 20ce39e 458efe2 20ce39e 458efe2 c5cb8fa 20ce39e c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 20ce39e 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 20ce39e 458efe2 c5cb8fa 458efe2 c5cb8fa 20ce39e 458efe2 c5cb8fa 20ce39e 458efe2 c5cb8fa 458efe2 20ce39e c5cb8fa 20ce39e c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 20ce39e 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 c5cb8fa 458efe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import torch
import numpy as np
import scipy
import os
import sys
import random
import numpy as np
import torch
import time
from datetime import datetime
import importlib
import json
import argparse
from omegaconf import OmegaConf
from snk.loss import PrismRegularizationLoss
from snk.prism_decoder import PrismDecoder
from shape_models.fmap import DFMNet
from shape_models.encoder import Encoder
from diffu_models.losses import VELoss, VPLoss, EDMLoss
from diffu_models.sds import guidance_grad
from utils.torch_fmap import torch_zoomout, knnsearch, extract_p2p_torch_fmap
from utils.utils_func import convert_dict, str_delta, ensure_pretrained_file
from utils.eval import accuracy
from utils.mesh import save_ply, load_mesh
from shape_data import get_data_dirs
from utils.pickle_stuff import safe_load_with_fallback
from utils.geometry import compute_operators, load_operators
from utils.surfaces import Surface
import sys
import spaces
try:
import google.colab
print("Running Colab")
from tqdm import tqdm
except ImportError:
print("Running local")
from tqdm.auto import tqdm
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
seed_everything()
class Tee:
def __init__(self, *outputs):
self.outputs = outputs
def write(self, message):
for output in self.outputs:
output.write(message)
output.flush() # ensure it's written immediately
def flush(self):
for output in self.outputs:
output.flush()
class DiffModel:
def __init__(self, cfg, device="cpu"):
if cfg["train_dir"] == "pretrained":
url = "https://huggingface.co/daidedou/diffumatch_model/resolve/main/network-snapshot-041216.pkl"
network_pkl = ensure_pretrained_file(url, "pretrained")
url_json = "https://huggingface.co/daidedou/diffumatch_model/resolve/main/training_options.json"
json_filename = ensure_pretrained_file(url_json, "pretrained", filename="training_options.json")
train_cfg = json.load(open(json_filename))
else:
num_exp = cfg["diff_num_exp"]
files = os.listdir(cfg["train_dir"])
for file in files:
if file[:5] == f"{num_exp:05d}":
netdir = os.path.join(cfg["train_dir"], file)
train_cfg = json.load(open(os.path.join(netdir, "training_options.json")))
pkls = [f for f in os.listdir(netdir) if ".pkl" in f]
nice_pkls = sorted(pkls, key=lambda x: int(x.split(".")[0].split("-")[-1]))
chosen_pkl = nice_pkls[-1]
network_pkl = os.path.join(netdir, chosen_pkl)
print(f'Loading network from "{network_pkl}"...')
self.net = safe_load_with_fallback(network_pkl)['ema'].to(device)
print('Done!')
loss_name = train_cfg['hyper_params']['loss_name']
self.loss_sde = None
if loss_name == "EDMLoss":
self.loss_sde = EDMLoss()
elif loss_name == "VPLoss":
self.loss_sde = VPLoss()
class Matcher(object):
def __init__(self, cfg):
self.cfg = cfg
self.diffusion_model = None
if self.cfg.get("sds", False):
self.diffusion_model = DiffModel(cfg["sds_conf"], "cpu")
self.n_fmap = self.cfg["deepfeat_conf"]["fmap"]["n_fmap"]
self.n_loop = 0
if self.cfg.get("optimize", False):
self.n_loop = self.cfg.opt.get("n_loop", 0)
self.snk = self.cfg.get("snk", False)
self.fmap_cfg = self.cfg.deepfeat_conf.fmap
self.dataloaders = dict()
def reconf(self, cfg):
self.cfg = cfg
self.n_fmap = self.cfg["deepfeat_conf"]["fmap"]["n_fmap"]
self.n_loop = 0
if self.cfg.get("optimize", False):
self.n_loop = self.cfg.opt.get("n_loop", 0)
self.fmap_cfg = self.cfg.deepfeat_conf.fmap
self.dataloaders = dict()
def _init(self):
cfg = self.cfg
self.fmap_model = DFMNet(self.cfg["deepfeat_conf"]["fmap"]).cuda()
if self.snk:
self.encoder = Encoder().cuda()
self.decoder = PrismDecoder(dim_in=515).cuda()
self.loss_prism = PrismRegularizationLoss(primo_h=0.02)
self.soft_p2p = True
params_to_opt = list(self.fmap_model.parameters()) + list(self.encoder.parameters()) + list(
self.decoder.parameters())
else:
params_to_opt = self.fmap_model.parameters()
self.optim = torch.optim.Adam(params_to_opt, lr=0.001, betas=(0.9, 0.99))
self.eye = torch.eye(self.n_fmap).float().cuda()
self.eye.requires_grad = False
def fmap(self, shape_dict, target_dict):
diff_model_cuda = self.diffusion_model
diff_model_cuda.net.cuda()
if self.fmap_cfg.get("use_diff", False):
C12_pred, C21_pred, feat1, feat2, evecs_trans1, evecs_trans2 = self.fmap_model(
{"shape1": shape_dict, "shape2": target_dict}, diff_model=diff_model_cuda,
scale=self.fmap_cfg.diffusion.time)
C12_pred, C12_obj, mask_12 = C12_pred
C21_pred, C21_obj, mask_21 = C21_pred
else:
C12_pred, C21_pred, feat1, feat2, evecs_trans1, evecs_trans2 = self.fmap_model(
{"shape1": shape_dict, "shape2": target_dict})
C12_obj, C21_obj = C12_pred, C21_pred
mask_12, mask_21 = None, None
return C12_pred, C12_obj, C21_pred, C21_obj, feat1, feat2, evecs_trans1, evecs_trans2, mask_12, mask_21
def zo_shot(self, shape_dict, target_dict):
self._init()
evecs1, evecs2 = shape_dict["evecs"], target_dict["evecs"]
_, C12_mask_init, _, _, _, _, _, _, _, _ = self.fmap(shape_dict, target_dict)
evecs_2trans = evecs2.t() @ torch.diag(target_dict["mass"])
new_FM = torch_zoomout(evecs1, evecs2, evecs_2trans, C12_mask_init.squeeze(), self.cfg["zo_shot"])
indKNN_new, _ = extract_p2p_torch_fmap(new_FM, evecs1, evecs2)
return new_FM, indKNN_new
def optimize(self, shape_dict, target_dict, target_normals):
self._init()
diff_model_cuda = self.diffusion_model
diff_model_cuda.net.cuda()
evecs1, evecs2 = shape_dict["evecs"], target_dict["evecs"]
C12_pred_init, _, _, _, _, _, evecs_trans1, evecs_trans2, _, _ = self.fmap(shape_dict, target_dict)
evecs_2trans = evecs2.t() @ torch.diag(target_dict["mass"])
evecs_1trans = evecs1.t() @ torch.diag(shape_dict["mass"])
n_verts_target = target_dict["vertices"].shape[-2]
loss_save = {"cycle": [], "fmap": [], "mse": [], "prism": [], "bij": [], "ortho": [], "sds": [], "lap": [],
"proper": []}
snk_rec = None
for i in tqdm(range(self.n_loop), "Optimizing matching " + shape_dict['name'] + " " + target_dict['name']):
C12_pred, C12_obj, C21_pred, C21_obj, feat1, feat2, evecs_trans1, evecs_trans2, _, _ = self.fmap(shape_dict,
target_dict)
if self.cfg.opt.soft_p2p:
### A la SNK
## P2P 2 -> 1
soft_p2p_21 = knnsearch(evecs2[:, :self.n_fmap] @ C12_pred.squeeze(), evecs1[:, :self.n_fmap],
prod=True)
C12_new = evecs_trans2[:self.n_fmap, :] @ soft_p2p_21 @ evecs1[:, :self.n_fmap]
soft_p2p_21 = knnsearch(evecs2[:, :self.n_fmap] @ C12_new.squeeze(), evecs1[:, :self.n_fmap], prod=True)
## P2P 1 -> 2
soft_p2p_12 = knnsearch(evecs1[:, :self.n_fmap] @ C21_pred.squeeze(), evecs2[:, :self.n_fmap],
prod=True)
C21_new = evecs_trans1[:self.n_fmap, :] @ soft_p2p_12 @ evecs2[:, :self.n_fmap]
soft_p2p_12 = knnsearch(evecs1[:, :self.n_fmap] @ C21_new.squeeze(), evecs2[:, :self.n_fmap], prod=True)
l_cycle = ((soft_p2p_12 @ (soft_p2p_21 @ shape_dict["vertices"]) - shape_dict["vertices"]) ** 2).sum(
dim=-1).mean()
else:
C12_new, C21_new = C12_pred, C21_pred
l_ortho = ((C12_new.squeeze() @ C12_new.squeeze().T - self.eye) ** 2).mean() + (
(C21_new.squeeze() @ C21_new.squeeze().T - self.eye) ** 2).mean()
l_bij = ((C12_new.squeeze() @ C21_new.squeeze() - self.eye) ** 2).mean() + (
(C21_new.squeeze() @ C12_new.squeeze() - self.eye) ** 2).mean()
l_lap = ((C12_new @ torch.diag(shape_dict["evals"][:self.n_fmap]) - torch.diag(
target_dict["evals"][:self.n_fmap]) @ C12_new) ** 2).mean()
l_lap += ((C21_new @ torch.diag(target_dict["evals"][:self.n_fmap]) - torch.diag(
shape_dict["evals"][:self.n_fmap]) @ C21_new) ** 2).mean()
l_cycle, l_prism, l_mse = torch.as_tensor(0.).float().cuda(), torch.as_tensor(0.).float().cuda(), torch.as_tensor(0.).float().cuda()
if self.snk:
# Latent vector
latents = self.encoder(shape_dict)
latents_duplicate = latents[None, :].repeat(n_verts_target, 1)
# Prism decoder
feats_decode = torch.cat((target_dict["vertices"], latents_duplicate), dim=1)
snk_rec, prism, rots = self.decoder(target_dict, feats_decode)
l_prism = self.loss_prism(prism, rots, target_dict["vertices"], target_dict["faces"], target_normals)
l_mse = ((soft_p2p_21 @ shape_dict["vertices"] - snk_rec) ** 2).sum(dim=-1).mean()
l_cycle = ((soft_p2p_12 @ (soft_p2p_21 @ shape_dict["vertices"]) - shape_dict["vertices"]) ** 2).sum(
dim=-1).mean()
l_sds, l_proper = torch.as_tensor(0.).float().cuda(), torch.as_tensor(0.).float().cuda()
if self.fmap_cfg.get("use_diff", False):
if self.fmap_cfg.diffusion.get("abs", False):
C12_in, C21_in = torch.abs(C12_pred).squeeze(), torch.abs(C21_pred).squeeze()
else:
C12_in, C21_in = C12_pred.squeeze(), C21_pred.squeeze()
grad_12, _ = guidance_grad(C12_in, self.diffusion_model.net, grad_scale=1,
batch_size=self.fmap_cfg.diffusion.batch_sds,
scale_noise=self.fmap_cfg.diffusion.time, device="cuda")
with torch.no_grad():
denoised_12 = C12_pred - self.optim.param_groups[0]['lr'] * grad_12
targets_12 = torch_zoomout(evecs1, evecs2, evecs_2trans, C12_obj.squeeze(), self.cfg.sds_conf.zoomout)
l_proper_12 = ((C12_pred.squeeze()[:self.n_fmap, :self.n_fmap] - targets_12.squeeze()[:self.n_fmap,
:self.n_fmap]) ** 2).mean()
grad_21, _ = guidance_grad(C21_in, diff_model_cuda.net, grad_scale=1,
batch_size=self.fmap_cfg.diffusion.batch_sds,
scale_noise=self.fmap_cfg.diffusion.time, device="cuda")
# denoised_21 = C21_pred - self.optim.param_groups[0]['lr'] * grad_21
with torch.no_grad():
denoised_21 = C21_pred - self.optim.param_groups[0]['lr'] * grad_21
targets_21 = torch_zoomout(evecs2, evecs1, evecs_1trans, C21_obj.squeeze(),
self.cfg.sds_conf.zoomout) # , step=10)
l_proper_21 = ((C21_pred.squeeze()[:self.n_fmap, :self.n_fmap] - targets_21.squeeze()[:self.n_fmap,
:self.n_fmap]) ** 2).mean()
l_proper = l_proper_12 + l_proper_21
l_sds = ((torch.abs(C12_pred).squeeze()[:self.n_fmap, :self.n_fmap] - denoised_12.squeeze()[
:self.n_fmap,
:self.n_fmap]) ** 2).mean()
l_sds += ((torch.abs(C21_pred).squeeze()[:self.n_fmap, :self.n_fmap] - denoised_21.squeeze()[
:self.n_fmap,
:self.n_fmap]) ** 2).mean()
loss = torch.as_tensor(0.).float().to("cuda")
if self.cfg.loss.get("ortho", 0) > 0:
loss += self.cfg.loss.get("ortho", 0) * l_ortho
if self.cfg.loss.get("bij", 0) > 0:
loss += self.cfg.loss.get("bij", 0) * l_bij
if self.cfg.loss.get("lap", 0) > 0:
loss += self.cfg.loss.get("lap", 0) * l_lap
if self.cfg.loss.get("cycle", 0) > 0:
loss += self.cfg.loss.get("cycle", 0) * l_cycle
if self.cfg.loss.get("mse_rec", 0) > 0:
loss += self.cfg.loss.get("mse_rec", 0) * l_mse
if self.cfg.loss.get("prism_rec", 0) > 0:
loss += self.cfg.loss.get("prism_rec", 0) * l_prism
if self.cfg.loss.get("sds", 0) > 0 and self.fmap_cfg.get("use_diff", False):
loss += self.cfg.loss.get("sds", 0) * l_sds
if self.cfg.loss.get("proper", 0) > 0 and self.fmap_cfg.get("use_diff", False):
loss += self.cfg.loss.get("proper", 0) * l_proper
loss.backward()
self.optim.step()
self.optim.zero_grad()
loss_save["cycle"].append(l_cycle.item())
loss_save["ortho"].append(l_ortho.item())
loss_save["bij"].append(l_bij.item())
loss_save["sds"].append(l_sds.item())
loss_save["proper"].append(l_proper.item())
loss_save["mse"].append(l_mse.item())
loss_save["prism"].append(l_prism.item())
indKNN_new_init, _ = extract_p2p_torch_fmap(C12_pred_init, evecs1, evecs2)
indKNN_new, _ = extract_p2p_torch_fmap(C12_new, evecs1, evecs2)
return C12_new, indKNN_new, indKNN_new_init, snk_rec, loss_save
def match(self, pair_batch, output_pair, geod_path, refine=True, eval=False):
shape_dict, _, target_dict, _, target_normals, mapinfo = pair_batch
shape_dict_device = convert_dict(shape_dict, self.device)
target_dict_device = convert_dict(target_dict, self.device)
print(shape_dict_device["vertices"].device)
os.makedirs(output_pair, exist_ok=True)
if self.cfg["optimize"]:
C12_new, p2p, p2p_init, snk_rec, loss_save = self.optimize(shape_dict_device, target_dict_device,
target_normals.to(self.device))
np.save(os.path.join(output_pair, "p2p_init.npy"), p2p_init)
np.save(os.path.join(output_pair, "losses.npy"), loss_save)
else:
C12_new, p2p = self.zo_shot(shape_dict_device, target_dict_device)
snk_rec, loss_save = None, None
np.save(os.path.join(output_pair, "fmap.npy"), C12_new.detach().squeeze().cpu().numpy())
np.save(os.path.join(output_pair, "p2p.npy"), p2p)
if snk_rec is not None:
save_ply(os.path.join(output_pair, "rec.ply"), snk_rec.detach().squeeze().cpu().numpy(),
target_dict["faces"])
if refine:
evecs1, evecs2 = shape_dict_device["evecs"], target_dict_device["evecs"]
evecs_2trans = evecs2.t() @ torch.diag(target_dict_device["mass"])
new_FM = torch_zoomout(evecs1, evecs2, evecs_2trans, C12_new.squeeze(), 128) # , step=10)
p2p_refined_zo, _ = extract_p2p_torch_fmap(new_FM, evecs1, evecs2)
np.save(os.path.join(output_pair, "p2p_zo.npy"), p2p)
if eval:
file_i, vts_1, vts_2 = mapinfo
mat_loaded = scipy.io.loadmat(os.path.join(geod_path, file_i + ".mat"))
A_geod, sqrt_area = mat_loaded['geod_dist'], np.sqrt(mat_loaded['areas_f'].sum())
_, dist = accuracy(p2p[vts_2], vts_1, A_geod,
sqrt_area=sqrt_area,
return_all=True)
if refine:
_, dist_zo = accuracy(p2p_refined_zo[vts_2], vts_1, A_geod,
sqrt_area=sqrt_area,
return_all=True)
np.savetxt(os.path.join(output_pair, "dists.txt"), (dist.mean(), dist_zo.mean()))
return p2p, p2p_refined_zo, loss_save, dist.mean(), dist_zo.mean()
return p2p, loss_save, dist.mean()
return p2p, loss_save
def _dataset_epoch(self, dataset, name_dataset, save_dir, data_dir):
os.makedirs(save_dir, exist_ok=True)
# dloader = DataLoader(dataset, collate_fn=collate_default, batch_size=1)
num_pairs = len(dataset)
id_pair = 0
all_accs = []
all_accs_zo = []
t1 = datetime.now()
save_txt = os.path.join(save_dir, "log.txt")
# Open a file for writing
log_file = open(save_txt, 'w')
# Replace sys.stdout with Tee that writes to both console and file
sys.stdout = Tee(sys.__stdout__, log_file)
for batch in dset:
shape_dict, _, target_dict, _, _, _ = batch
print("Pair: " + shape_dict['name'] + " " + target_dict['name'])
name_exp = os.path.join(save_dir, shape_dict['name'], target_dict['name'])
if self.cfg.get("refine", False):
_, _, _, dist, dist_zo = self.match(batch, name_exp, os.path.join(data_dir, "geomats", name_dataset),
eval=True, refine=True)
else:
_, _, dist = self.match(batch, name_exp, os.path.join(data_dir, "geomats", name_dataset), eval=True,
refine=False)
delta = datetime.now() - t1
fm_delta = str_delta(delta)
remains = ((delta / (id_pair + 1)) * num_pairs) - delta
fm_remains = str_delta(remains)
all_accs.append(dist)
accs_mean = np.mean(all_accs)
if self.cfg.get("refine", False):
all_accs_zo.append(dist_zo)
accs_zo = np.mean(all_accs_zo)
print(
f"error: {dist}, zo: {dist_zo}, element {id_pair}/{num_pairs}, mean accuracy: {accs_mean}, mean zo: {accs_zo}, full time: {fm_delta}, remains: {fm_remains}")
else:
print(
f"error: {dist}, element {id_pair}/{num_pairs}, mean accuracy: {accs_mean}, full time: {fm_delta}, remains: {fm_remains}")
id_pair += 1
if self.cfg.get("refine", False):
print(f"mean error : {np.mean(all_accs)}, mean error refined: {np.mean(all_accs_zo)}")
else:
print(f"mean error : {np.mean(all_accs)}")
sys.stdout = sys.__stdout__
def load_data(self, file, num_evecs=200, make_cache=False, factor=None):
name = os.path.basename(os.path.splitext(file)[0])
cache_file = "single_" + name + ".npz"
verts_shape, faces, vnormals, area_shape, center_shape = load_mesh(file, return_vnormals=True)
cache_path = os.path.join(self.cfg.cache, cache_file)
print("Cache is: ", cache_path)
if not os.path.exists(cache_path) or make_cache:
print("Computing operators ...")
compute_operators(verts_shape, faces, vnormals, num_evecs, cache_path, force_save=make_cache)
data_dict = load_operators(cache_path)
data_dict['name'] = name
data_dict_torch = convert_dict(data_dict, self.device)
# batchify_dict(data_dict_torch)
return data_dict_torch, area_shape
def match_files(self, file_shape, file_target):
batch_shape, _ = self.load_data(file_shape)
batch_target, _ = self.load_data(file_target)
target_surf = Surface(filename=file_target)
target_normals = torch.from_numpy(
target_surf.surfel / np.linalg.norm(target_surf.surfel, axis=-1, keepdims=True)).float().to(self.device)
batch = batch_shape, None, batch_target, target_normals, None, None
output_folder = os.path.join(self.cfg.output, batch_shape["name"] + "_" + batch_shape["target"])
p2p, _ = self.match(batch, output_folder, None)
return batch_shape, batch_target, p2p
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Launch the SDS demo over datasets")
parser.add_argument('--dataset', type=str, default="SCAPE", help='name of the dataset')
parser.add_argument('--config', type=str, default="config/matching/sds.yaml", help='Config file location')
parser.add_argument('--datadir', type=str, default="data", help='path where datasets are store')
parser.add_argument('--output', type=str, default="results", help="where to store experience results")
args = parser.parse_args()
arg_cfg = OmegaConf.from_dotlist(
[f"{k}={v}" for k, v in vars(args).items() if v is not None]
)
yaml_cfg = OmegaConf.load(args.config)
cfg = OmegaConf.merge(yaml_cfg, arg_cfg)
dataset_name = args.dataset.lower()
if cfg.get("oriented", False):
dataset_name += "_ori"
shape_cls = getattr(importlib.import_module(f'shape_data.{args.dataset.lower()}'), 'ShapeDataset')
pair_cls = getattr(importlib.import_module(f'shape_data.{args.dataset.lower()}'), 'ShapePairDataset')
data_dir, name_data_geo, corr_dir = get_data_dirs(args.datadir, dataset_name, 'test')
name_data_geo = "_".join(name_data_geo.split("_")[:2])
dset_shape = shape_cls(data_dir, "cache/fmaps", "test", oriented=cfg.get("oriented", False))
print("Preprocessing shapes done.")
dset = pair_cls(corr_dir, 'test', dset_shape, rotate=cfg.get("rotate", False))
exp_time = time.strftime('%y-%m-%d_%H-%M-%S')
output_logs = os.path.join(args.output, name_data_geo, exp_time)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
matcher = Matcher(cfg, device)
matcher._dataset_epoch(dset, name_data_geo, output_logs, args.datadir) |