diffumatch / app.py
daidedou
final commit
d9a06fc
"""
Simple Gradio app for two-mesh initialization and run phases.
- Upload two meshes (.ply, .obj, .off)
- (Optional) upload a YAML config to override defaults
- Adjust a few numeric settings (sane ranges). Defaults pulled from the provided YAML when present.
- Click **Init** to generate "initialization maps" (here: position/normal-based vertex colors) for both meshes.
- Click **Run** to simulate an iterative evolution with a progress bar, then output another pair of colored meshes.
Replace the bodies of `make_initialization_maps` and `run_evolution` with your real pipeline as needed.
Tested with: gradio >= 4.0, trimesh, pyyaml, numpy.
"""
from __future__ import annotations
import os
import io
import time
import json
import shutil
import tempfile
from typing import Dict, Tuple, Optional
from omegaconf import OmegaConf
import gradio as gr
import spaces
import numpy as np
import trimesh
import zero_shot
import yaml
from utils.surfaces import Surface
import notebook_helpers as helper
from utils.meshplot import visu_pts
from utils.fmap import FM_to_p2p
from utils.torch_fmap import extract_p2p_torch_fmap, torch_zoomout
import torch
import argparse
from utils.utils_func import convert_dict
# -----------------------------
# Utils
# -----------------------------
SUPPORTED_EXTS = {".ply", ".obj", ".off", ".stl", ".glb", ".gltf"}
def _safe_ext(path: str) -> str:
for ext in SUPPORTED_EXTS:
if path.lower().endswith(ext):
return ext
return os.path.splitext(path)[1].lower()
def convert_and_show(mesh_file):
os.makedirs("tmp/glbs", exist_ok=True)
if mesh_file is None:
return None
mesh = trimesh.load(mesh_file.name)
tn = int(np.random.rand()*1e10)
f_name = f"tmp/glbs/mesh_{tn}.glb"
mesh.export(f_name)
return f_name
def convert_and_show_twice(mesh_file_1, mesh_file_2):
return convert_and_show(mesh_file_1), convert_and_show(mesh_file_2)
def normalize_vertices(vertices: np.ndarray) -> np.ndarray:
v = vertices.astype(np.float64)
v = v - v.mean(axis=0, keepdims=True)
scale = np.linalg.norm(v, axis=1).max()
if scale == 0:
scale = 1.0
v = v / scale
return v.astype(np.float32)
def ensure_vertex_colors(mesh: trimesh.Trimesh, colors: np.ndarray) -> trimesh.Trimesh:
out = mesh.copy()
if colors.shape[1] == 3:
rgba = np.concatenate([colors, 255*np.ones((colors.shape[0],1), dtype=np.uint8)], axis=1)
else:
rgba = colors
out.visual.vertex_colors = rgba
return out
def export_for_view(surf: Surface, colors: np.ndarray, basename: str, outdir: str) -> Tuple[str, str]:
"""Export to PLY (with vertex colors) and GLB for Model3D preview."""
glb_path = os.path.join(outdir, f"{basename}.glb")
mesh = trimesh.Trimesh(surf.vertices, surf.faces, process=False)
colored_mesh = ensure_vertex_colors(mesh, colors)
colored_mesh.export(glb_path)
return glb_path
# -----------------------------
# Algorithm placeholders (replace with your real pipeline)
# -----------------------------
DEFAULT_SETTINGS = {
"deepfeat_conf.fmap.lambda_": 1,
"sds_conf.zoomout": 35,
"diffusion.time": 1.0,
"opt.n_loop": 250,
"loss.sds": 1.0,
"loss.proper": 1.0,
}
FLOAT_SLIDERS = {
# name: (min, max, step)
"deepfeat_conf.fmap.lambda_": (1e-3, 10.0, 1e-3),
"diffusion.time": (0.1, 10.0, 0.1),
"loss.sds": (1e-3, 10.0, 1e-3),
"loss.proper": (1e-3, 10.0, 1e-3),
}
INT_SLIDERS = {
"opt.n_loop": (1, 5000, 1),
"sds_conf.zoomout": (31, 50, 1),
}
def flatten_yaml_floats(d: Dict, prefix: str = "") -> Dict[str, float]:
flat = {}
for k, v in d.items():
key = f"{prefix}.{k}" if prefix else str(k)
if isinstance(v, dict):
flat.update(flatten_yaml_floats(v, key))
elif isinstance(v, (int, float)):
flat[key] = float(v)
return flat
def read_yaml_defaults(yaml_path: Optional[str]) -> Dict[str, float]:
if yaml_path and os.path.exists(yaml_path):
with open(yaml_path, "r") as f:
data = yaml.safe_load(f)
flat = flatten_yaml_floats(data)
# Only keep known keys we expose as controls
defaults = DEFAULT_SETTINGS.copy()
for k in list(DEFAULT_SETTINGS.keys()):
if k in flat:
defaults[k] = float(flat[k])
return defaults
return DEFAULT_SETTINGS.copy()
class Datadicts:
def __init__(self, shape_path, target_path):
self.shape_path = shape_path
basename_1 = os.path.basename(shape_path)
self.shape_dict, self.shape_dict_down = helper.load_data(shape_path, "tmp/" + os.path.splitext(basename_1)[0]+".npz", "source", make_cache=True)
self.shape_surf = Surface(filename=shape_path)
self.shape_surf_down = Surface(filename=self.shape_dict_down["file"])
self.target_path = target_path
basename_2 = os.path.basename(target_path)
self.target_dict, self.target_dict_down = helper.load_data(target_path, "tmp/" + os.path.splitext(basename_2)[0]+".npz", "target", make_cache=True)
self.target_surf = Surface(filename=target_path)
self.target_surf_down = Surface(filename=self.target_dict_down["file"])
self.cmap1 = visu_pts(self.shape_surf)
self.cmap1_down = visu_pts(self.shape_surf_down)
# -----------------------------
# Gradio UI
# -----------------------------
TMP_ROOT = tempfile.mkdtemp(prefix="meshapp_")
def save_array_txt(arr):
# Create a temporary file with .txt suffix
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w") as f:
np.savetxt(f, arr.astype(int), fmt="%d") # save as text
return f.name
def build_outputs(surf_a: Surface, surf_b: Surface, cmap_a: np.ndarray, p2p: np.ndarray, tag: str) -> Tuple[str, str, str, str]:
outdir = os.path.join(TMP_ROOT, tag)
os.makedirs(outdir, exist_ok=True)
glb_a = export_for_view(surf_a, cmap_a, f"A_{tag}", outdir)
cmap_b = cmap_a[p2p]
glb_b = export_for_view(surf_b, cmap_b, f"B_{tag}", outdir)
out_file = save_array_txt(p2p)
return glb_a, glb_b, out_file
@spaces.GPU
def init_clicked(mesh1_path, mesh2_path,
lambda_val, zoomout_val, time_val, nloop_val, sds_val, proper_val):
matcher._init()
print("inside init")
cfg.deepfeat_conf.fmap.lambda_ = lambda_val
cfg.sds_conf.zoomout = zoomout_val
cfg.deepfeat_conf.fmap.diffusion.time = time_val
cfg.opt.n_loop = nloop_val
cfg.loss.sds = sds_val
cfg.loss.proper = proper_val
matcher.reconf(cfg)
if not mesh1_path or not mesh2_path:
raise gr.Error("Please upload both meshes.")
global datadicts
datadicts = Datadicts(mesh1_path, mesh2_path)
shape_dict, target_dict = convert_dict(datadicts.shape_dict_down, 'cuda'), convert_dict(datadicts.target_dict_down, 'cuda')
fmap_model_cuda = matcher.fmap_model.cuda()
diff_model_cuda = matcher.diffusion_model
diff_model_cuda.net.cuda()
C12_pred_init, C21_pred_init, feat1, feat2, evecs_trans1, evecs_trans2 = fmap_model_cuda({"shape1": shape_dict, "shape2": target_dict}, diff_model=diff_model_cuda, scale=matcher.fmap_cfg.diffusion.time)
C12_pred, C12_obj, mask_12 = C12_pred_init
evecs1, evecs2 = torch.from_numpy(datadicts.shape_dict["evecs"]).cuda(), torch.from_numpy(datadicts.target_dict["evecs"]).cuda()
C_up, C_down = torch.from_numpy(datadicts.target_dict["Cup"]).cuda(), torch.from_numpy(datadicts.shape_dict_down["Cdown"]).cuda()
n_fmap = C12_obj.shape[-1]
with torch.no_grad():
C12_all = C_up.squeeze()[:n_fmap, :n_fmap] @ C12_obj.clone().squeeze() @ C_down.squeeze()[:n_fmap, :n_fmap]
p2p_init = FM_to_p2p(C12_all.cpu().numpy(), datadicts.shape_dict["evecs"], datadicts.target_dict["evecs"])
return build_outputs(datadicts.shape_surf, datadicts.target_surf, datadicts.cmap1, p2p_init, tag="init")
@spaces.GPU(duration=60)
def run_clicked(mesh1_path, mesh2_path, yaml_path, lambda_val, zoomout_val, time_val, nloop_val, sds_val, proper_val, progress=gr.Progress(track_tqdm=True)):
if not mesh1_path or not mesh2_path:
raise gr.Error("Please upload both meshes.")
cfg.deepfeat_conf.fmap.lambda_ = lambda_val
cfg.sds_conf.zoomout = zoomout_val
cfg.deepfeat_conf.fmap.diffusion.time = time_val
cfg.opt.n_loop = nloop_val
cfg.loss.sds = sds_val
cfg.loss.proper = proper_val
matcher.reconf(cfg)
if not mesh1_path or not mesh2_path:
raise gr.Error("Please upload both meshes.")
matcher._init()
global datadicts
if datadicts is None:
datadicts = Datadicts(mesh1_path, mesh2_path)
elif datadicts is not None:
if not (datadicts.shape_path == mesh1_path and datadicts.target_path == mesh2_path):
datadicts = Datadicts(mesh1_path, mesh2_path)
shape_dict, target_dict = convert_dict(datadicts.shape_dict_down, 'cuda'), convert_dict(datadicts.target_dict_down, 'cuda')
target_normals = torch.from_numpy(datadicts.target_surf_down.surfel/np.linalg.norm(datadicts.target_surf_down.surfel, axis=-1, keepdims=True)).float().to("cuda")
C12_new, p2p, p2p_init, _, loss_save = matcher.optimize(shape_dict, target_dict, target_normals)
C_up, C_down = torch.from_numpy(datadicts.target_dict["Cup"]).cuda(), torch.from_numpy(datadicts.shape_dict_down["Cdown"]).cuda()
evecs1, evecs2 = torch.from_numpy(datadicts.shape_dict["evecs"]).cuda(), torch.from_numpy(datadicts.target_dict["evecs"]).cuda()
evecs_2trans = evecs2.t() @ torch.diag(torch.from_numpy(datadicts.target_dict["mass"]).cuda())
with torch.no_grad():
n_fmap = C12_new.shape[-1]
C12_all = C_up.squeeze()[:n_fmap, :n_fmap] @ C12_new.clone().squeeze() @ C_down.squeeze()[:n_fmap, :n_fmap]
C12_end_zo = torch_zoomout(evecs1, evecs2, evecs_2trans, C12_all, 50)
p2p_zo, _ = extract_p2p_torch_fmap(C12_end_zo, evecs1, evecs2)
return build_outputs(datadicts.shape_surf, datadicts.target_surf, datadicts.cmap1, p2p_zo, tag="run")
with gr.Blocks(title="DiffuMatch demo") as demo:
gr.Markdown(
"""
<div align="center">
<h1>DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching</h1>
</div>
<br/>
Upload two meshes and try our ICCV zero-shot method <a href="https://daidedou.github.io/publication/nonrigiddiff">DiffuMatch</a> <br/>
<b>Init</b> will give you a rough correspondence, and you can click on <b>Run</b> to see if our method is able to match the two shapes! <br/>
<b>Recommended</b/>: The method requires that the meshes are aligned (rotation-wise) to work well.<br/>
The method have been adapted to the zeroGPU environment, so results won't be as good as in the paper. Also without Pykeops, the optimization is much slower. <br/>
We recommend using the <a href="https://github.com/daidedou/diffumatch">offical code</a> if you want to get the best results. <br/>
This method might not work with topological inconsistencies, and will crash for methods with high number of vertices (>10000) - because of the preprocessing. Try it out and let us know! <br/>
"""
)
with gr.Row():
with gr.Column():
mesh1 = gr.File(label="Source Mesh (.ply, .off, .obj)", file_types=[".ply", ".off", ".obj"])
mesh1_viewer = gr.Model3D(label="Preview Source")
mesh1.upload(fn=convert_and_show, inputs=mesh1, outputs=mesh1_viewer)
with gr.Column():
mesh2 = gr.File(label="Target Mesh (.ply, .off, .obj)", file_types=[".ply", ".off", ".obj"])
mesh2_viewer = gr.Model3D(label="Preview Target")
mesh2.upload(fn=convert_and_show, inputs=mesh2, outputs=mesh2_viewer)
gr.Examples(
examples=[
["examples/man.ply", "examples/woman.ply"],
["examples/wolf.ply", "examples/horse.ply"],
["examples/cactus.off", "examples/cactus_deformed.off"],
],
fn=convert_and_show_twice,
inputs=[mesh1, mesh2],
outputs=[mesh1_viewer, mesh2_viewer],
label="Try some example pairs",
cache_examples=True
)
with gr.Accordion("Optional YAML full settings (see github to config)", open=False):
yaml_file = gr.File(label="Optional YAML config", file_types=[".yaml", ".yml"], visible=True)
# except Exception:
with gr.Accordion("Settings", open=True):
with gr.Row():
lambda_val = gr.Slider(minimum=FLOAT_SLIDERS["deepfeat_conf.fmap.lambda_"][0], maximum=FLOAT_SLIDERS["deepfeat_conf.fmap.lambda_"][1], step=FLOAT_SLIDERS["deepfeat_conf.fmap.lambda_"][2], value=DEFAULT_SETTINGS["deepfeat_conf.fmap.lambda_"], label="deepfeat_conf.fmap.lambda_")
zoomout_val = gr.Slider(minimum=INT_SLIDERS["sds_conf.zoomout"][0], maximum=INT_SLIDERS["sds_conf.zoomout"][1], step=INT_SLIDERS["sds_conf.zoomout"][2], value=DEFAULT_SETTINGS["sds_conf.zoomout"], label="sds_conf.zoomout")
time_val = gr.Slider(minimum=FLOAT_SLIDERS["diffusion.time"][0], maximum=FLOAT_SLIDERS["diffusion.time"][1], step=FLOAT_SLIDERS["diffusion.time"][2], value=DEFAULT_SETTINGS["diffusion.time"], label="diffusion.time")
with gr.Row():
nloop_val = gr.Slider(minimum=INT_SLIDERS["opt.n_loop"][0], maximum=INT_SLIDERS["opt.n_loop"][1], step=INT_SLIDERS["opt.n_loop"][2], value=DEFAULT_SETTINGS["opt.n_loop"], label="opt.n_loop")
sds_val = gr.Slider(minimum=FLOAT_SLIDERS["loss.sds"][0], maximum=FLOAT_SLIDERS["loss.sds"][1], step=FLOAT_SLIDERS["loss.sds"][2], value=1, label="loss.sds")
proper_val = gr.Slider(minimum=FLOAT_SLIDERS["loss.proper"][0], maximum=FLOAT_SLIDERS["loss.proper"][1], step=FLOAT_SLIDERS["loss.proper"][2], value=1, label="loss.proper")
with gr.Row():
init_btn = gr.Button("Init", variant="primary")
run_btn = gr.Button("Run", variant="secondary")
gr.Markdown("### Outputs\n For both **Init** and **Run** stages, \n we provide a preview of the correspondences as coloreds glbs, \n and the obtained correspondence as a .txt file. \n The map is optimized with downsampled shapes (which breaks the cactus example) and zoomout to filter the last map is only done for 20 steps, so you will need to filter the final map with better quality using e.g. [pyfmaps](https://pypi.org/project/pyfmaps/).")
with gr.Tab("Init"):
with gr.Row():
init_view_a = gr.Model3D(label="Shape")
init_view_b = gr.Model3D(label="Target correspondence (init)")
with gr.Row():
out_file_init = gr.File(label="Download correspondences TXT")
with gr.Tab("Run"):
with gr.Row():
run_view_a = gr.Model3D(label="Shape")
run_view_b = gr.Model3D(label="Target correspondence (run)")
with gr.Row():
out_file = gr.File(label="Download correspondences TXT")
init_btn.click(
fn=init_clicked,
inputs=[mesh1, mesh2, lambda_val, zoomout_val, time_val, nloop_val, sds_val, proper_val],
outputs=[init_view_a, init_view_b, out_file_init],
api_name="init",
)
run_btn.click(
fn=run_clicked,
inputs=[mesh1, mesh2, yaml_file, lambda_val, zoomout_val, time_val, nloop_val, sds_val, proper_val],
outputs=[run_view_a, run_view_b, out_file],
api_name="run",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Launch the gradio demo")
parser.add_argument('--config', type=str, default="config/matching/sds.yaml", help='Config file location')
parser.add_argument('--share', action="store_true")
args = parser.parse_args()
cfg = OmegaConf.load(args.config)
print("Making matcher")
matcher = zero_shot.Matcher(cfg)
print("Matcher ready")
#shutil.rmtree("tmp")
os.makedirs("tmp", exist_ok=True)
os.makedirs("tmp/plys", exist_ok=True)
datadicts = None
demo.launch(share=args.share)