Spaces:
Build error
Build error
most filtering is done
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
|
| 4 |
# Load the spaces.parquet file as a dataframe
|
| 5 |
df = pd.read_parquet("spaces.parquet")
|
| 6 |
-
|
| 7 |
"""
|
| 8 |
Todos:
|
| 9 |
Create tabbed interface for filtering and graphs
|
|
@@ -14,10 +14,40 @@ Todos:
|
|
| 14 |
Plotly graph of hardware
|
| 15 |
Investigate README lengths
|
| 16 |
bar chart of the number of spaces per author
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
| 18 |
|
| 19 |
|
| 20 |
-
def filtered_df(emoji, likes):
|
| 21 |
_df = df
|
| 22 |
# if emoji is not none, filter the dataframe with it
|
| 23 |
if emoji:
|
|
@@ -25,11 +55,50 @@ def filtered_df(emoji, likes):
|
|
| 25 |
# if likes is not none, filter the dataframe with it
|
| 26 |
if likes:
|
| 27 |
_df = _df[_df["likes"] >= likes]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
return _df
|
| 29 |
|
| 30 |
|
| 31 |
with gr.Blocks() as demo:
|
| 32 |
df = df[df["stage"] == "RUNNING"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
emoji = gr.Dropdown(
|
| 34 |
df["emoji"].unique().tolist(), label="Search by Emoji 🤗", multiselect=True
|
| 35 |
) # Dropdown to select the emoji
|
|
@@ -42,13 +111,87 @@ with gr.Blocks() as demo:
|
|
| 42 |
hardware = gr.Dropdown(
|
| 43 |
df["hardware"].unique().tolist(), label="Search by Hardware", multiselect=True
|
| 44 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
devMode = gr.Checkbox(value=False, label="DevMode Enabled")
|
| 46 |
clear = gr.ClearButton(components=[emoji])
|
| 47 |
|
| 48 |
-
df = pd.DataFrame(
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
-
print(df.head())
|
| 54 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
|
| 5 |
# Load the spaces.parquet file as a dataframe
|
| 6 |
df = pd.read_parquet("spaces.parquet")
|
|
|
|
| 7 |
"""
|
| 8 |
Todos:
|
| 9 |
Create tabbed interface for filtering and graphs
|
|
|
|
| 14 |
Plotly graph of hardware
|
| 15 |
Investigate README lengths
|
| 16 |
bar chart of the number of spaces per author
|
| 17 |
+
Is there a correlation between pinning a space and the number of likes?
|
| 18 |
+
Is a correlation between the emoji and the number of likes?
|
| 19 |
+
distribution of python versions
|
| 20 |
+
what models are most used
|
| 21 |
+
what organizations are most popular in terms of their models and datasets being used
|
| 22 |
+
most duplicated spaces
|
| 23 |
+
|
| 24 |
+
"id",
|
| 25 |
+
"author",
|
| 26 |
+
"created_at",
|
| 27 |
+
"last_modified",
|
| 28 |
+
"subdomain",
|
| 29 |
+
"host",
|
| 30 |
+
"likes",
|
| 31 |
+
"sdk",
|
| 32 |
+
"tags",
|
| 33 |
+
"readme_size",
|
| 34 |
+
"python_version",
|
| 35 |
+
"license",
|
| 36 |
+
"duplicated_from",
|
| 37 |
+
"models",
|
| 38 |
+
"datasets",
|
| 39 |
+
"emoji",
|
| 40 |
+
"colorFrom",
|
| 41 |
+
"colorTo",
|
| 42 |
+
"pinned",
|
| 43 |
+
"stage",
|
| 44 |
+
"hardware",
|
| 45 |
+
"devMode",
|
| 46 |
+
"custom_domains",
|
| 47 |
"""
|
| 48 |
|
| 49 |
|
| 50 |
+
def filtered_df(emoji, likes, author, hardware, tags, models, datasets):
|
| 51 |
_df = df
|
| 52 |
# if emoji is not none, filter the dataframe with it
|
| 53 |
if emoji:
|
|
|
|
| 55 |
# if likes is not none, filter the dataframe with it
|
| 56 |
if likes:
|
| 57 |
_df = _df[_df["likes"] >= likes]
|
| 58 |
+
if author:
|
| 59 |
+
_df = _df[_df["author"].isin(author)]
|
| 60 |
+
if hardware:
|
| 61 |
+
_df = _df[_df["hardware"].isin(hardware)]
|
| 62 |
+
# check to see if the array of sdk_tags contains any of the selected tags
|
| 63 |
+
if tags:
|
| 64 |
+
_df = _df[_df["sdk_tags"].apply(lambda x: any(tag in x for tag in tags))]
|
| 65 |
+
if models:
|
| 66 |
+
_df = _df[
|
| 67 |
+
_df["models"].apply(
|
| 68 |
+
lambda x: (
|
| 69 |
+
any(model in x for model in models) if x is not None else False
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
]
|
| 73 |
+
if datasets:
|
| 74 |
+
_df = _df[
|
| 75 |
+
_df["datasets"].apply(
|
| 76 |
+
lambda x: (
|
| 77 |
+
any(dataset in x for dataset in datasets)
|
| 78 |
+
if x is not None
|
| 79 |
+
else False
|
| 80 |
+
)
|
| 81 |
+
)
|
| 82 |
+
]
|
| 83 |
return _df
|
| 84 |
|
| 85 |
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
df = df[df["stage"] == "RUNNING"]
|
| 88 |
+
# combine the sdk and tags columns, one of which is a string and the other is an array of strings
|
| 89 |
+
# first convert the sdk column to an array of strings
|
| 90 |
+
df["sdk"] = df["sdk"].apply(lambda x: np.array([x]))
|
| 91 |
+
# then combine the sdk and tags columns so that their elements are together
|
| 92 |
+
df["sdk_tags"] = df[["sdk", "tags"]].apply(
|
| 93 |
+
lambda x: np.concatenate((x[0], x[1])), axis=1
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# where the custom_domains column is not null, use that as the url, otherwise, use the host column
|
| 97 |
+
df["url"] = np.where(
|
| 98 |
+
df["custom_domains"].isnull(),
|
| 99 |
+
df["id"],
|
| 100 |
+
df["custom_domains"],
|
| 101 |
+
)
|
| 102 |
emoji = gr.Dropdown(
|
| 103 |
df["emoji"].unique().tolist(), label="Search by Emoji 🤗", multiselect=True
|
| 104 |
) # Dropdown to select the emoji
|
|
|
|
| 111 |
hardware = gr.Dropdown(
|
| 112 |
df["hardware"].unique().tolist(), label="Search by Hardware", multiselect=True
|
| 113 |
)
|
| 114 |
+
author = gr.Dropdown(
|
| 115 |
+
df["author"].unique().tolist(), label="Search by Author", multiselect=True
|
| 116 |
+
)
|
| 117 |
+
# get the list of unique strings in the sdk_tags column
|
| 118 |
+
sdk_tags = np.unique(np.concatenate(df["sdk_tags"].values))
|
| 119 |
+
# create a dropdown for the sdk_tags
|
| 120 |
+
sdk_tags = gr.Dropdown(
|
| 121 |
+
sdk_tags.tolist(), label="Filter by SDK/Tags", multiselect=True
|
| 122 |
+
)
|
| 123 |
+
# create a gradio checkbox group for hardware
|
| 124 |
+
hardware = gr.CheckboxGroup(
|
| 125 |
+
df["hardware"].unique().tolist(), label="Filter by Hardware"
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
space_license = gr.CheckboxGroup(
|
| 129 |
+
df["license"].unique().tolist(), label="Filter by license"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Assuming df is your dataframe and 'array_column' is the column containing np.array of strings
|
| 133 |
+
array_column_as_lists = df["models"].apply(
|
| 134 |
+
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
|
| 135 |
+
)
|
| 136 |
+
# Now, flatten all arrays into one list
|
| 137 |
+
flattened_strings = np.concatenate(array_column_as_lists.values)
|
| 138 |
+
# Get unique strings
|
| 139 |
+
unique_strings = np.unique(flattened_strings)
|
| 140 |
+
# Convert to a list if needed
|
| 141 |
+
unique_strings_list = unique_strings.tolist()
|
| 142 |
+
models = gr.Dropdown(
|
| 143 |
+
unique_strings_list,
|
| 144 |
+
label="Search by Model",
|
| 145 |
+
multiselect=True,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Assuming df is your dataframe and 'array_column' is the column containing np.array of strings
|
| 149 |
+
array_column_as_lists = df["datasets"].apply(
|
| 150 |
+
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Now, flatten all arrays into one list
|
| 154 |
+
flattened_strings = np.concatenate(array_column_as_lists.values)
|
| 155 |
+
# Get unique strings
|
| 156 |
+
unique_strings = np.unique(flattened_strings)
|
| 157 |
+
# Convert to a list if needed
|
| 158 |
+
unique_strings_list = unique_strings.tolist()
|
| 159 |
+
datasets = gr.Dropdown(
|
| 160 |
+
unique_strings_list,
|
| 161 |
+
label="Search by Model",
|
| 162 |
+
multiselect=True,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
devMode = gr.Checkbox(value=False, label="DevMode Enabled")
|
| 166 |
clear = gr.ClearButton(components=[emoji])
|
| 167 |
|
| 168 |
+
df = pd.DataFrame(
|
| 169 |
+
df[
|
| 170 |
+
[
|
| 171 |
+
"id",
|
| 172 |
+
"emoji",
|
| 173 |
+
"author",
|
| 174 |
+
"url",
|
| 175 |
+
"likes",
|
| 176 |
+
"hardware",
|
| 177 |
+
"sdk_tags",
|
| 178 |
+
"models",
|
| 179 |
+
"datasets",
|
| 180 |
+
]
|
| 181 |
+
]
|
| 182 |
+
)
|
| 183 |
+
df["url"] = df["url"].apply(
|
| 184 |
+
lambda x: (
|
| 185 |
+
f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
|
| 186 |
+
if x is not None and "/" in x
|
| 187 |
+
else f"<a target='_blank' href=https://{x[0]}>{x[0]}</a>"
|
| 188 |
+
)
|
| 189 |
+
)
|
| 190 |
+
gr.DataFrame(
|
| 191 |
+
filtered_df,
|
| 192 |
+
inputs=[emoji, likes, author, hardware, sdk_tags, models, datasets],
|
| 193 |
+
datatype="html",
|
| 194 |
+
)
|
| 195 |
|
| 196 |
|
|
|
|
| 197 |
demo.launch()
|