Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from torchvision import transforms, models | |
| from PIL import Image | |
| import gradio as gr | |
| # Load the pre-trained DenseNet-121 model | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = models.densenet121(pretrained=True) | |
| # Modify the classifier layer to output probabilities for 14 classes (pathologies) | |
| num_classes = 14 | |
| model.classifier = nn.Sequential( | |
| nn.Linear(model.classifier.in_features, num_classes), | |
| nn.Sigmoid(), # Use Sigmoid for multi-label classification | |
| ) | |
| try: | |
| model.load_state_dict(torch.load('chexnet.pth', map_location=device)) | |
| except Exception as e: | |
| print(f"Error loading pre-trained weights: {e}") | |
| model.to(device) | |
| model.eval() | |
| # Define image transformations (resize, normalize) | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| ]) | |
| # Class names and their interpretations for the 14 diseases | |
| class_names = [ | |
| 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', | |
| 'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema', | |
| 'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia' | |
| ] | |
| interpretations = { | |
| 'Atelectasis': "Partial or complete collapse of the lung.", | |
| 'Cardiomegaly': "Enlargement of the heart.", | |
| 'Effusion': "Fluid accumulation in the chest cavity.", | |
| 'Infiltration': "Substances such as fluid in the lungs.", | |
| 'Mass': "An abnormal growth in the lung.", | |
| 'Nodule': "Small round or oval-shaped growth in the lung.", | |
| 'Pneumonia': "Infection causing inflammation in the air sacs.", | |
| 'Pneumothorax': "Air in the pleural space causing lung collapse.", | |
| 'Consolidation': "Lung tissue that has filled with liquid.", | |
| 'Edema': "Excess fluid in the lungs.", | |
| 'Emphysema': "Damage to air sacs causing difficulty breathing.", | |
| 'Fibrosis': "Thickening or scarring of lung tissue.", | |
| 'Pleural Thickening': "Thickening of the pleura (lining of the lungs).", | |
| 'Hernia': "Displacement of an organ through a structure." | |
| } | |
| # Prediction function | |
| def predict_disease(image): | |
| image = transform(image).unsqueeze(0).to(device) # Transform and add batch dimension | |
| with torch.no_grad(): | |
| outputs = model(image) | |
| outputs = outputs.cpu().numpy().flatten() | |
| # Result with interpretations | |
| result = { | |
| f"{class_name} ({interpretations[class_name]})": float(prob) | |
| for class_name, prob in zip(class_names, outputs) | |
| } | |
| return result | |
| # References to display | |
| references = """ | |
| 1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition. | |
| 2. Wang, X., et al. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR. | |
| 3. Rajpurkar, P., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225. | |
| 4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569. | |
| """ | |
| # Gradio Interface without using deprecated parameters | |
| interface = gr.Interface( | |
| fn=predict_disease, | |
| inputs=gr.components.Image(type='pil'), # Updated input component | |
| outputs=[gr.components.Label(label="Disease Probabilities"), gr.components.Textbox(label="References", value=references, lines=10)], | |
| title="CheXNet Pneumonia Detection", | |
| description="""Upload a chest X-ray to detect the probability of 14 different diseases. | |
| References: | |
| 1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition. | |
| 2. Wang, X., et al. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR. | |
| 3. Rajpurkar, P., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225. | |
| 4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569. | |
| """, | |
| ) | |
| # Gradio Interface | |
| interface = gr.Interface( | |
| fn=predict_disease, | |
| inputs=gr.components.Image(type='pil'), # Updated input component | |
| outputs="label", # Output is a dictionary of labels with probabilities | |
| title="CheXNet Pneumonia Detection", | |
| description="Upload a chest X-ray to detect the probability of 14 different diseases.", | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| interface.launch() | |