BARTΒΆ
DISCLAIMER: If you see something strange, file a Github Issue and assign @patrickvonplaten
OverviewΒΆ
The Bart model was proposed in BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.
According to the abstract,
Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT).
The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token.
BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE.
The Authorsβ code can be found here.
ExamplesΒΆ
Examples and scripts for fine-tuning BART and other models for sequence to sequence tasks can be found in examples/seq2seq/.
An example of how to train
BartForConditionalGenerationwith a Hugging Facedatasetsobject can be found in this forum discussion.
Implementation NotesΒΆ
Bart doesnβt use
token_type_idsfor sequence classification. UseBartTokenizerorencode()to get the proper splitting.The forward pass of
BartModelwill create decoder inputs (using the helper functiontransformers.modeling_bart._prepare_bart_decoder_inputs()) if they are not passed. This is different than some other modeling APIs.Model predictions are intended to be identical to the original implementation. This only works, however, if the string you pass to
fairseq.encode()starts with a space.generate()should be used for conditional generation tasks like summarization, see the example in that docstrings.Models that load the facebook/bart-large-cnn weights will not have a
mask_token_id, or be able to perform mask-filling tasks.For training/forward passes that donβt involve beam search, pass
use_cache=False.
BartConfigΒΆ
-
class
transformers.BartConfig(activation_dropout=0.0, extra_pos_embeddings=2, activation_function='gelu', vocab_size=50265, d_model=1024, encoder_ffn_dim=4096, encoder_layers=12, encoder_attention_heads=16, decoder_ffn_dim=4096, decoder_layers=12, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, attention_dropout=0.0, dropout=0.1, max_position_embeddings=1024, init_std=0.02, classifier_dropout=0.0, num_labels=3, is_encoder_decoder=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, normalize_before=False, add_final_layer_norm=False, do_blenderbot_90_layernorm=False, scale_embedding=False, normalize_embedding=True, static_position_embeddings=False, add_bias_logits=False, force_bos_token_to_be_generated=False, **common_kwargs)[source]ΒΆ This is the configuration class to store the configuration of a
BartModel. It is used to instantiate a BART model according to the specified arguments, defining the model architecture.Configuration objects inherit from
PretrainedConfigand can be used to control the model outputs. Read the documentation fromPretrainedConfigfor more information.- Parameters
vocab_size (
int, optional, defaults to 50265) β Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by theinputs_idspassed when callingBartModel.d_model (
int, optional, defaults to 1024) β Dimensionality of the layers and the pooler layer.encoder_layers (
int, optional, defaults to 12) β Number of encoder layers, 6 are used for the bart-base model.decoder_layers (
int, optional, defaults to 12) β Number of decoder layers, 6 are used for the bart-base model.encoder_attention_heads (
int, optional, defaults to 16) β Number of attention heads for each attention layer in the Transformer encoder.decoder_attention_heads (
int, optional, defaults to 16) β Number of attention heads for each attention layer in the Transformer decoder.decoder_ffn_dim (
int, optional, defaults to 4096) β Dimensionality of the βintermediateβ (often named feed-forward) layer in decoder.encoder_ffn_dim (
int, optional, defaults to 4096) β Dimensionality of the βintermediateβ (often named feed-forward) layer in decoder.activation_function (
strorfunction, optional, defaults to"gelu") β The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu","relu","silu"and"gelu_new"are supported.dropout (
float, optional, defaults to 0.1) β The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_dropout (
float, optional, defaults to 0.0) β The dropout ratio for the attention probabilities.activation_dropout (
float, optional, defaults to 0.0) β The dropout ratio for activations inside the fully connected layer.classifier_dropout (
float, optional, defaults to 0.0) β The dropout ratio for classifier.max_position_embeddings (
int, optional, defaults to 1024) β The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).init_std (
float, optional, defaults to 0.02) β The standard deviation of the truncated_normal_initializer for initializing all weight matrices.add_bias_logits (
bool, optional, defaults toFalse) β This should be completed, specific to marian.normalize_before (
bool, optional, defaults toFalse) β Call layernorm before attention ops.normalize_embedding (
bool, optional, defaults toTrue) β Call layernorm after embeddings.static_position_embeddings (
bool, optional, defaults toFalse) β Donβt learn positional embeddings, use sinusoidal.add_final_layer_norm (
bool, optional, defaults toFalse) β Why not add another layernorm?do_blenderbot_90_layernorm (
bool, optional, defaults toFalse) β Blenderbot-90m checkpoint uses layernorm_embedding one line earlier in the decoder.scale_embedding (
bool, optional, defaults toFalse) β Scale embeddings by diving by sqrt(d_model).eos_token_id (
int, optional, defaults to 2) β End of stream token id.pad_token_id (
int, optional, defaults to 1) β Padding token id.bos_token_id (
int, optional, defaults to 0) β Beginning of stream token id.encoder_layerdrop β (
float, optional, defaults to 0.0): The LayerDrop probability for the encoder. See the LayerDrop paper for more details.decoder_layerdrop β (
float, optional, defaults to 0.0): The LayerDrop probability for the decoder. See the LayerDrop paper for more details.extra_pos_embeddings β (
int, optional, defaults to 2): How many extra learned positional embeddings to use. Should be set topad_token_id+1.num_labels β (
int, optional, defaults to 3): The number of labels to use inBartForSequenceClassification.is_encoder_decoder (
bool, optional, defaults toTrue) β Whether this is an encoder/decoder model.force_bos_token_to_be_generated (
bool, optional, defaults toFalse) β Whether or not to force BOS token to be generated at step 1 (afterdecoder_start_token_id), onlyTruefor bart-large-cnn.
BartTokenizerΒΆ
-
class
transformers.BartTokenizer(vocab_file, merges_file, errors='replace', bos_token='<s>', eos_token='</s>', sep_token='</s>', cls_token='<s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>', add_prefix_space=False, **kwargs)[source]ΒΆ Construct a BART tokenizer.
BartTokenizeris identical toRobertaTokenizerand adds a newprepare_seq2seq_batch()Refer to superclass
RobertaTokenizerfor usage examples and documentation concerning the initialization parameters and other methods.-
prepare_seq2seq_batch(src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = 'longest', return_tensors: str = 'None', truncation=True, **kwargs) → transformers.tokenization_utils_base.BatchEncoding[source]ΒΆ Prepare a batch that can be passed directly to an instance of
BartModel.- Parameters
src_texts β (
List[str]): List of documents to summarize or source language texts.tgt_texts β (
List[str], optional): List of summaries or target language texts.max_length (
int, optional) β Controls the maximum length for encoder inputs (documents to summarize or source language texts). If left unset or set toNone, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated.max_target_length (
int, optional) β Controls the maximum length of decoder inputs (target language texts or summaries). If left unset or set toNone, this will use the max_length value.padding (
bool,strorPaddingStrategy, optional, defaults toFalse) βActivates and controls padding. Accepts the following values:
Trueor'longest': Pad to the longest sequence in the batch (or no padding if only a single sequence if provided).'max_length': Pad to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided.Falseor'do_not_pad'(default): No padding (i.e., can output a batch with sequences of different lengths).
return_tensors (
strorTensorType, optional, defaults to βptβ) βIf set, will return tensors instead of list of python integers. Acceptable values are:
'tf': Return TensorFlowtf.constantobjects.'pt': Return PyTorchtorch.Tensorobjects.'np': Return Numpynp.ndarrayobjects.
truncation (
bool,strorTruncationStrategy, optional, defaults toTrue) βActivates and controls truncation. Accepts the following values:
Trueor'longest_first': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided.'only_first': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.'only_second': Truncate to a maximum length specified with the argumentmax_lengthor to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.Falseor'do_not_truncate'(default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size).
**kwargs β Additional keyword arguments passed along to
self.__call__.
- Returns
A
BatchEncodingwith the following fields:input_ids β List of token ids to be fed to the encoder.
attention_mask β List of indices specifying which tokens should be attended to by the model.
labels β List of token ids for tgt_texts
The full set of keys
[input_ids, attention_mask, labels], will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys.- Return type
-
BartModelΒΆ
-
class
transformers.BartModel(config: transformers.configuration_bart.BartConfig)[source]ΒΆ The bare BART Model outputting raw hidden-states without any specific head on top.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
BartConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs: Optional[Tuple] = None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]ΒΆ The
BartModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
BartTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) β Provide for translation and summarization training. By default, the model will create this tensor by shifting theinput_idsto the right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) βDefault behavior: generate a tensor that ignores pad tokens in
decoder_input_ids. Causal mask will also be used by default.If you want to change padding behavior, you should read
modeling_bart._prepare_decoder_inputs()and modify to your needs. See diagram 1 in the paper for more information on the default strategy.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) β Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
Tuple[Dict[str: tf.Tensor]]of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) βContains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that donβt have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.
- Returns
A
Seq2SeqModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output.past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
Seq2SeqModelOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import BartTokenizer, BartModel >>> import torch >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> model = BartModel.from_pretrained('facebook/bart-large', return_dict=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
-
transformers.modeling_bart._prepare_bart_decoder_inputs(config, input_ids, decoder_input_ids=None, decoder_padding_mask=None, causal_mask_dtype=torch.float32)[source]ΒΆ Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided. This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during generation
BartForConditionalGenerationΒΆ
-
class
transformers.BartForConditionalGeneration(config: transformers.configuration_bart.BartConfig)[source]ΒΆ The BART Model with a language modeling head. Can be used for summarization.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
BartConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, past_key_values=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **unused)[source]ΒΆ The
BartForConditionalGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
BartTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) β Provide for translation and summarization training. By default, the model will create this tensor by shifting theinput_idsto the right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) βDefault behavior: generate a tensor that ignores pad tokens in
decoder_input_ids. Causal mask will also be used by default.If you want to change padding behavior, you should read
modeling_bart._prepare_decoder_inputs()and modify to your needs. See diagram 1 in the paper for more information on the default strategy.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) β Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
Tuple[Dict[str: tf.Tensor]]of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) βContains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that donβt have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) β Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].
- Returns
A
Seq2SeqLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Language modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Conditional generation example:
>>> # Mask filling only works for bart-large >>> from transformers import BartTokenizer, BartForConditionalGeneration >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids'] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = logits[0, masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5) >>> tokenizer.decode(predictions).split() >>> # ['good', 'great', 'all', 'really', 'very']
- Return type
Seq2SeqLMOutputortuple(torch.FloatTensor)
Summarization example:
>>> from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig >>> # see ``examples/summarization/bart/run_eval.py`` for a longer example >>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt') >>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
BartForSequenceClassificationΒΆ
-
class
transformers.BartForSequenceClassification(config: transformers.configuration_bart.BartConfig, **kwargs)[source]ΒΆ Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
BartConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
BartForSequenceClassificationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
BartTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) β Provide for translation and summarization training. By default, the model will create this tensor by shifting theinput_idsto the right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) βDefault behavior: generate a tensor that ignores pad tokens in
decoder_input_ids. Causal mask will also be used by default.If you want to change padding behavior, you should read
modeling_bart._prepare_decoder_inputs()and modify to your needs. See diagram 1 in the paper for more information on the default strategy.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) β Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
Tuple[Dict[str: tf.Tensor]]of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) βContains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that donβt have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size,), optional) β Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]. Ifconfig.num_labels > 1a classification loss is computed (Cross-Entropy).
- Returns
A
Seq2SeqSequenceClassifierOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelis provided) β Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensorof shape(batch_size, config.num_labels)) β Classification (or regression if config.num_labels==1) scores (before SoftMax).past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
Seq2SeqSequenceClassifierOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import BartTokenizer, BartForSequenceClassification >>> import torch >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> model = BartForSequenceClassification.from_pretrained('facebook/bart-large', return_dict=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
BartForQuestionAnsweringΒΆ
-
class
transformers.BartForQuestionAnswering(config)[source]ΒΆ BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits and span end logits).
This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
BartConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, start_positions=None, end_positions=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
BartForQuestionAnsweringforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
BartTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) β Provide for translation and summarization training. By default, the model will create this tensor by shifting theinput_idsto the right, following the paper.decoder_attention_mask (
torch.BoolTensorof shape(batch_size, tgt_seq_len), optional) βDefault behavior: generate a tensor that ignores pad tokens in
decoder_input_ids. Causal mask will also be used by default.If you want to change padding behavior, you should read
modeling_bart._prepare_decoder_inputs()and modify to your needs. See diagram 1 in the paper for more information on the default strategy.encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) β Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
Tuple[Dict[str: tf.Tensor]]of lengthconfig.n_layerswith each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)) βContains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that donβt have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aModelOutputinstead of a plain tuple.start_positions (
torch.LongTensorof shape(batch_size,), optional) β Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensorof shape(batch_size,), optional) β Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
Seq2SeqQuestionAnsweringModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftorch.FloatTensorcomprising various elements depending on the configuration (BartConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) β Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
torch.FloatTensorof shape(batch_size, sequence_length)) β Span-start scores (before SoftMax).end_logits (
torch.FloatTensorof shape(batch_size, sequence_length)) β Span-end scores (before SoftMax).past_key_values (
List[torch.FloatTensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftorch.FloatTensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
Seq2SeqQuestionAnsweringModelOutputortuple(torch.FloatTensor)
Example:
>>> from transformers import BartTokenizer, BartForQuestionAnswering >>> import torch >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> model = BartForQuestionAnswering.from_pretrained('facebook/bart-large', return_dict=True) >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors='pt') >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits
TFBartModelΒΆ
-
class
transformers.TFBartModel(*args, **kwargs)[source]ΒΆ The bare BART Model outputting raw hidden-states without any specific head on top.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
BartConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(inputs, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs: Optional[transformers.modeling_tf_outputs.TFBaseModelOutput] = None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]ΒΆ The
TFBartModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensorof shape({0})) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
tf.Tensorof shape({0}), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
tf.Tensorof shape(batch_size, target_sequence_length), optional) β Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.decoder_attention_mask (
tf.Tensorof shape(batch_size, tgt_seq_len), optional) β will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.encoder_outputs (
tf.FloatTensor, optional) β hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape(batch_size, sequence_length, hidden_size)is a sequence ofpast_key_values (
Tuple[Dict[str: tf.Tensor]]of lengthconfig.n_layers) β contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that donβt have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generationoutput_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aTFModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFSeq2SeqModelOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (BartConfig) and inputs.last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size)) β Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output.past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFSeq2SeqModelOutputortuple(tf.Tensor)
TFBartForConditionalGenerationΒΆ
-
class
transformers.TFBartForConditionalGeneration(*args, **kwargs)[source]ΒΆ The BART Model with a language modeling head. Can be used for summarization.
This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(inputs_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
BartConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(inputs, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs: Optional[transformers.modeling_tf_outputs.TFBaseModelOutput] = None, past_key_values=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]ΒΆ The
TFBartForConditionalGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensorof shape({0})) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
tf.Tensorof shape({0}), optional) βMask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
tf.Tensorof shape(batch_size, target_sequence_length), optional) β Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.decoder_attention_mask (
tf.Tensorof shape(batch_size, tgt_seq_len), optional) β will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.encoder_outputs (
tf.FloatTensor, optional) β hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape(batch_size, sequence_length, hidden_size)is a sequence ofpast_key_values (
Tuple[Dict[str: tf.Tensor]]of lengthconfig.n_layers) β contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that donβt have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) β If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generationoutput_attentions (
bool, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) β Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) β Whether or not to return aTFModelOutputinstead of a plain tuple.training (
bool, optional, defaults toFalse) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFSeq2SeqLMOutput(ifreturn_dict=Trueis passed or whenconfig.return_dict=True) or a tuple oftf.Tensorcomprising various elements depending on the configuration (BartConfig) and inputs.loss (
tf.Tensorof shape(1,), optional, returned whenlabelsis provided) β Language modeling loss.logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) β List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) β Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) β Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
# Mask filling only works for bart-large from transformers import BartTokenizer, TFBartForConditionalGeneration import tensorflow as tf mname = 'facebook/bart-large' tokenizer = BartTokenizer.from_pretrained(mname) TXT = "My friends are <mask> but they eat too many carbs." model = TFBartForConditionalGeneration.from_pretrained(mname) batch = tokenizer([TXT], return_tensors='tf') logits = model(inputs=batch.input_ids, return_dict=True).logits probs = tf.nn.softmax(logits[0]) # probs[5] is associated with the mask token
- Return type
TFSeq2SeqLMOutputortuple(tf.Tensor)