Datasets:
Formats:
webdataset
Size:
100K - 1M
File size: 9,005 Bytes
e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 3d25b9f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 93dea3f e6571d9 3d25b9f 0fe09e1 e6571d9 3d25b9f e6571d9 93dea3f e6571d9 3d25b9f e6571d9 93dea3f e6571d9 93dea3f 07a7813 e6571d9 b111519 e6571d9 07a7813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
---
task_categories:
- reinforcement-learning
- robotics
tags:
- robotics
- libero
- manipulation
- semantic-action-chunking
- vision-language
- imitation-learning
size_categories:
- 100K<n<1M
---
# GATE-VLAP Datasets
**Grounded Action Trajectory Embeddings with Vision-Language Action Planning**
This repository contains preprocessed datasets from the LIBERO benchmark suite in WebDataset TAR format, specifically designed for training vision-language-action models with semantic action segmentation.
## Data Format: WebDataset TAR
We provide datasets in **WebDataset TAR format** for optimal performance:
✅ **Fast loading** - Efficient streaming during training
✅ **Easy downloading** - Single file per subtask
✅ **HuggingFace optimized** - Quick browsing and file listing
✅ **Inspectable** - Extract locally to view individual frames
### Extracting TAR Files
```bash
# Download a subtask
wget https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar
# Extract all files
tar -xf pick_up_the_black_bowl.tar
# View structure
ls
# Output: demo_0/ demo_1/ demo_2/ ...
# View demo contents
ls demo_0/
# Output: demo_0_timestep_0000.png demo_0_timestep_0000.json
# demo_0_timestep_0001.png demo_0_timestep_0001.json
# ...
```
### Loading Raw Data (After Extraction)
```python
from pathlib import Path
import json
from PIL import Image
import numpy as np
def load_demo(demo_dir):
"""Load a single demonstration from extracted TAR."""
frames = []
demo_path = Path(demo_dir)
for json_file in sorted(demo_path.glob("*.json")):
# Load metadata
with open(json_file) as f:
data = json.load(f)
# Load image
png_file = json_file.with_suffix(".png")
data["image"] = np.array(Image.open(png_file))
frames.append(data)
return frames
# After extracting pick_up_the_black_bowl.tar
demo = load_demo("demo_0")
print(f"Demo length: {len(demo)} frames")
print(f"Action shape: {demo[0]['action']}")
```
### Loading with WebDataset (Direct Streaming)
```python
import webdataset as wds
from PIL import Image
import json
# Stream data directly from HuggingFace (no download needed!)
url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar"
dataset = wds.WebDataset(url).decode("rgb")
for sample in dataset:
# sample["png"] = PIL Image (128x128 RGB)
# sample["json"] = bytes (JSON metadata)
metadata = json.loads(sample["json"])
image = sample["png"]
print(f"Action: {metadata['action']}")
print(f"Image shape: {np.array(image).shape}")
break
```
### Training with Multiple Subtasks
```python
import webdataset as wds
import torch
from torch.utils.data import DataLoader
# Load multiple subtasks at once
base_url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/"
subtasks = ["pick_up_the_black_bowl", "close_the_drawer", "open_the_top_drawer"]
urls = [f"{base_url}{task}.tar" for task in subtasks]
dataset = (
wds.WebDataset(urls)
.decode("rgb")
.to_tuple("png", "json")
.map(preprocess_fn) # Your preprocessing function
)
dataloader = DataLoader(dataset, batch_size=32, num_workers=4)
for images, actions in dataloader:
# Train your model
pass
```
## Datasets Included
### LIBERO-10 (Long-Horizon Tasks)
- **Task Type**: 10 complex, long-horizon manipulation tasks
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
- **Demos**: 1,354 demonstrations across 29 subtasks
- **Frames**: 103,650 total frames
- **TAR Files**: 29 files (one per subtask)
**Example Tasks**:
- `pick_up_the_black_bowl.tar` → Pick and place subtasks
- `close_the_drawer.tar` → Approach, grasp, close subtasks
- `put_the_bowl_in_the_drawer.tar` → Multi-step pick, open, place, close sequence
### LIBERO-Object (Object Manipulation)
- **Task Type**: 10 object-centric manipulation tasks
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
- **Demos**: 875 demonstrations across 20 subtasks
- **Frames**: 66,334 total frames
- **TAR Files**: 20 files (one per subtask)
**Example Tasks**:
- `pick_up_the_alphabet_soup.tar` → Approach, grasp, lift
- `place_the_alphabet_soup_on_the_basket.tar` → Move, position, place, release
## 📁 Dataset Structure
```
gate-institute/GATE-VLAP-datasets/
├── libero_10/ # Long-horizon tasks (29 TAR files)
│ ├── close_the_drawer.tar
│ ├── pick_up_the_black_bowl.tar
│ ├── open_the_top_drawer.tar
│ └── ... (26 more)
│
├── libero_object/ # Object manipulation (20 TAR files)
│ ├── pick_up_the_alphabet_soup.tar
│ ├── place_the_alphabet_soup_on_the_basket.tar
│ └── ... (18 more)
│
└── metadata/ # Dataset statistics & segmentation
├── libero_10_complete_stats.json
├── libero_10_all_segments.json
├── libero_object_complete_stats.json
└── libero_object_all_segments.json
```
### Inside Each TAR File
After extracting `pick_up_the_black_bowl.tar`:
```
pick_up_the_black_bowl/
├── demo_0/
│ ├── demo_0_timestep_0000.png # RGB observation (128×128)
│ ├── demo_0_timestep_0000.json # Action + metadata
│ ├── demo_0_timestep_0001.png
│ ├── demo_0_timestep_0001.json
│ └── ...
├── demo_1/
│ └── ...
└── ... (all demos for this subtask)
```
## Data Format
### JSON Metadata (per timestep)
Each `.json` file contains:
```json
{
"action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0], // 7-DOF action
"robot_state": [...], // Joint state
"demo_id": "demo_0",
"timestep": 42,
"subtask": "pick_up_the_black_bowl",
"parent_task": "LIBERO_10",
"is_stop_signal": false // Segment boundary
}
```
### Action Space
- **Dimensions**: 7-DOF
- `[0:3]`: End-effector position delta (x, y, z)
- `[3:6]`: End-effector orientation delta (roll, pitch, yaw)
- `[6]`: Gripper action (0.0 = close, 1.0 = open)
- **Range**: Normalized to [-1, 1]
- **Control**: Delta actions (relative to current pose)
### Image Format
- **Resolution**: 128×128 pixels
- **Channels**: RGB (3 channels)
- **Format**: PNG (lossless compression)
- **Camera**: Front-facing agentview camera
## Metadata Files Explained
### 1. `libero_10_complete_stats.json`
**Purpose**: Overview statistics for the entire LIBERO-10 dataset
**Use Cases**:
- Understand dataset composition
- Plan training splits
- Check demo/frame distribution across tasks
### 2. `libero_10_all_segments.json`
**Purpose**: Detailed segmentation metadata for each demonstration
Contains semantic action chunks with:
- Segment boundaries (start/end frames)
- Action descriptions
- Segment types (reach, grasp, move, place, etc.)
- Gemini Vision API segmentation method
**Use Cases**:
- Train with semantic action chunks
- Implement hierarchical policies
- Analyze action primitives
- Filter by segment type
### 3. `libero_object_complete_stats.json`
**Purpose**: Statistics for LIBERO-Object dataset
### 4. `libero_object_all_segments.json`
**Purpose**: Segmentation for LIBERO-Object demonstrations with semantic action chunking
## Citation
If you use this dataset, please cite:
```bibtex
@article{gateVLAP@SAC2026,
title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents},
author={Stefan Tabakov, Asen Popov, Dimitar Dimitrov, Ensiye Kiyamousavi and Boris Kraychev},
journal={arXiv preprint arXiv:XXXX.XXXXX},
conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)},
year={2025}
}
@inproceedings{liu2023libero,
title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
booktitle={NeurIPS Datasets and Benchmarks Track},
year={2023}
}
```
## Related Resources
- **Model Checkpoints**: [gate-institute/GATE-VLAP](https://huggingface.co/gate-institute/GATE-VLAP)
- **Original LIBERO**: [https://github.com/Lifelong-Robot-Learning/LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO)
- **Paper**: Coming soon
## Acknowledgments
- **LIBERO Benchmark**: Original dataset by Liu et al. (2023)
- **Segmentation**: Gemini Vision API for semantic action chunking
- **Institution**: [GATE Institute](https://www.gate-ai.eu/en/home/), Sofia, Bulgaria
## Contact
For questions or issues, please contact the [GATE Institute](https://www.gate-ai.eu/en/home/).
---
**Dataset Version**: 1.0
**Last Updated**: December 2025
**Maintainer**: [GATE Institute](https://www.gate-ai.eu/en/home/) |