File size: 9,005 Bytes
e6571d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93dea3f
e6571d9
93dea3f
e6571d9
93dea3f
e6571d9
93dea3f
 
 
 
e6571d9
93dea3f
e6571d9
93dea3f
 
 
e6571d9
93dea3f
 
e6571d9
93dea3f
 
 
e6571d9
93dea3f
 
 
 
 
e6571d9
 
93dea3f
e6571d9
 
 
 
 
 
 
 
93dea3f
e6571d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93dea3f
 
e6571d9
93dea3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6571d9
 
 
 
 
 
 
 
 
 
93dea3f
e6571d9
 
93dea3f
 
 
e6571d9
 
 
 
3d25b9f
e6571d9
 
93dea3f
e6571d9
 
93dea3f
 
e6571d9
 
 
 
 
93dea3f
 
 
 
 
e6571d9
93dea3f
 
 
 
e6571d9
 
 
 
 
 
 
 
93dea3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6571d9
 
 
 
 
 
 
 
93dea3f
 
e6571d9
 
 
 
93dea3f
e6571d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93dea3f
e6571d9
 
 
 
 
 
 
 
93dea3f
 
 
 
 
e6571d9
93dea3f
e6571d9
 
 
 
 
 
 
93dea3f
e6571d9
 
 
93dea3f
e6571d9
 
 
 
 
 
3d25b9f
 
0fe09e1
e6571d9
3d25b9f
 
e6571d9
 
 
 
 
93dea3f
e6571d9
 
 
 
 
 
3d25b9f
e6571d9
93dea3f
e6571d9
 
 
 
93dea3f
07a7813
e6571d9
 
 
b111519
e6571d9
 
 
 
 
07a7813
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
---
task_categories:
- reinforcement-learning
- robotics
tags:
- robotics
- libero
- manipulation
- semantic-action-chunking
- vision-language
- imitation-learning
size_categories:
- 100K<n<1M
---

# GATE-VLAP Datasets

**Grounded Action Trajectory Embeddings with Vision-Language Action Planning**

This repository contains preprocessed datasets from the LIBERO benchmark suite in WebDataset TAR format, specifically designed for training vision-language-action models with semantic action segmentation.

## Data Format: WebDataset TAR

We provide datasets in **WebDataset TAR format** for optimal performance:

✅ **Fast loading** - Efficient streaming during training  
✅ **Easy downloading** - Single file per subtask  
✅ **HuggingFace optimized** - Quick browsing and file listing  
✅ **Inspectable** - Extract locally to view individual frames

### Extracting TAR Files

```bash
# Download a subtask
wget https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar

# Extract all files
tar -xf pick_up_the_black_bowl.tar

# View structure
ls
# Output: demo_0/  demo_1/  demo_2/  ...

# View demo contents
ls demo_0/
# Output: demo_0_timestep_0000.png  demo_0_timestep_0000.json
#         demo_0_timestep_0001.png  demo_0_timestep_0001.json
#         ...
```

### Loading Raw Data (After Extraction)

```python
from pathlib import Path
import json
from PIL import Image
import numpy as np

def load_demo(demo_dir):
    """Load a single demonstration from extracted TAR."""
    frames = []
    demo_path = Path(demo_dir)
    
    for json_file in sorted(demo_path.glob("*.json")):
        # Load metadata
        with open(json_file) as f:
            data = json.load(f)
        
        # Load image
        png_file = json_file.with_suffix(".png")
        data["image"] = np.array(Image.open(png_file))
        
        frames.append(data)
    
    return frames

# After extracting pick_up_the_black_bowl.tar
demo = load_demo("demo_0")
print(f"Demo length: {len(demo)} frames")
print(f"Action shape: {demo[0]['action']}")
```

### Loading with WebDataset (Direct Streaming)

```python
import webdataset as wds
from PIL import Image
import json

# Stream data directly from HuggingFace (no download needed!)
url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/pick_up_the_black_bowl.tar"

dataset = wds.WebDataset(url).decode("rgb")

for sample in dataset:
    # sample["png"] = PIL Image (128x128 RGB)
    # sample["json"] = bytes (JSON metadata)
    metadata = json.loads(sample["json"])
    image = sample["png"]
    
    print(f"Action: {metadata['action']}")
    print(f"Image shape: {np.array(image).shape}")
    break
```

### Training with Multiple Subtasks

```python
import webdataset as wds
import torch
from torch.utils.data import DataLoader

# Load multiple subtasks at once
base_url = "https://huggingface.co/datasets/gate-institute/GATE-VLAP-datasets/resolve/main/libero_10/"
subtasks = ["pick_up_the_black_bowl", "close_the_drawer", "open_the_top_drawer"]
urls = [f"{base_url}{task}.tar" for task in subtasks]

dataset = (
    wds.WebDataset(urls)
    .decode("rgb")
    .to_tuple("png", "json")
    .map(preprocess_fn)  # Your preprocessing function
)

dataloader = DataLoader(dataset, batch_size=32, num_workers=4)

for images, actions in dataloader:
    # Train your model
    pass
```

## Datasets Included

### LIBERO-10 (Long-Horizon Tasks)

- **Task Type**: 10 complex, long-horizon manipulation tasks
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
- **Demos**: 1,354 demonstrations across 29 subtasks
- **Frames**: 103,650 total frames
- **TAR Files**: 29 files (one per subtask)

**Example Tasks**:
- `pick_up_the_black_bowl.tar` → Pick and place subtasks
- `close_the_drawer.tar` → Approach, grasp, close subtasks
- `put_the_bowl_in_the_drawer.tar` → Multi-step pick, open, place, close sequence

### LIBERO-Object (Object Manipulation)

- **Task Type**: 10 object-centric manipulation tasks  
- **Segmentation Method**: Semantic Action Chunking using Gemini Vision API
- **Demos**: 875 demonstrations across 20 subtasks
- **Frames**: 66,334 total frames
- **TAR Files**: 20 files (one per subtask)

**Example Tasks**:
- `pick_up_the_alphabet_soup.tar` → Approach, grasp, lift
- `place_the_alphabet_soup_on_the_basket.tar` → Move, position, place, release

## 📁 Dataset Structure

```
gate-institute/GATE-VLAP-datasets/
├── libero_10/                          # Long-horizon tasks (29 TAR files)
│   ├── close_the_drawer.tar
│   ├── pick_up_the_black_bowl.tar
│   ├── open_the_top_drawer.tar
│   └── ... (26 more)

├── libero_object/                      # Object manipulation (20 TAR files)
│   ├── pick_up_the_alphabet_soup.tar
│   ├── place_the_alphabet_soup_on_the_basket.tar
│   └── ... (18 more)

└── metadata/                           # Dataset statistics & segmentation
    ├── libero_10_complete_stats.json
    ├── libero_10_all_segments.json
    ├── libero_object_complete_stats.json
    └── libero_object_all_segments.json
```

### Inside Each TAR File

After extracting `pick_up_the_black_bowl.tar`:

```
pick_up_the_black_bowl/
├── demo_0/
│   ├── demo_0_timestep_0000.png        # RGB observation (128×128)
│   ├── demo_0_timestep_0000.json       # Action + metadata
│   ├── demo_0_timestep_0001.png
│   ├── demo_0_timestep_0001.json
│   └── ...
├── demo_1/
│   └── ...
└── ... (all demos for this subtask)
```

## Data Format

### JSON Metadata (per timestep)

Each `.json` file contains:

```json
{
  "action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0],  // 7-DOF action
  "robot_state": [...],                             // Joint state
  "demo_id": "demo_0",
  "timestep": 42,
  "subtask": "pick_up_the_black_bowl",
  "parent_task": "LIBERO_10",
  "is_stop_signal": false                           // Segment boundary
}
```

### Action Space

- **Dimensions**: 7-DOF
  - `[0:3]`: End-effector position delta (x, y, z)
  - `[3:6]`: End-effector orientation delta (roll, pitch, yaw)  
  - `[6]`: Gripper action (0.0 = close, 1.0 = open)
- **Range**: Normalized to [-1, 1]
- **Control**: Delta actions (relative to current pose)

### Image Format

- **Resolution**: 128×128 pixels
- **Channels**: RGB (3 channels)
- **Format**: PNG (lossless compression)
- **Camera**: Front-facing agentview camera

## Metadata Files Explained

### 1. `libero_10_complete_stats.json`

**Purpose**: Overview statistics for the entire LIBERO-10 dataset

**Use Cases**: 
- Understand dataset composition
- Plan training splits
- Check demo/frame distribution across tasks

### 2. `libero_10_all_segments.json`

**Purpose**: Detailed segmentation metadata for each demonstration

Contains semantic action chunks with:
- Segment boundaries (start/end frames)
- Action descriptions
- Segment types (reach, grasp, move, place, etc.)
- Gemini Vision API segmentation method

**Use Cases**:
- Train with semantic action chunks
- Implement hierarchical policies  
- Analyze action primitives
- Filter by segment type

### 3. `libero_object_complete_stats.json`

**Purpose**: Statistics for LIBERO-Object dataset

### 4. `libero_object_all_segments.json`

**Purpose**: Segmentation for LIBERO-Object demonstrations with semantic action chunking

## Citation

If you use this dataset, please cite:

```bibtex
@article{gateVLAP@SAC2026,
  title={Atomic Action Slicing: Planner-Aligned Options for Generalist VLA Agents},
  author={Stefan Tabakov, Asen Popov, Dimitar Dimitrov, Ensiye Kiyamousavi and Boris Kraychev},
  journal={arXiv preprint arXiv:XXXX.XXXXX},
  conference={The 41st ACM/SIGAPP Symposium On Applied Computing (SAC2026), track on Intelligent Robotics and Multi-Agent Systems (IRMAS)},
  year={2025}
}

@inproceedings{liu2023libero,
  title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
  author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
  booktitle={NeurIPS Datasets and Benchmarks Track},
  year={2023}
}
```

## Related Resources

- **Model Checkpoints**: [gate-institute/GATE-VLAP](https://huggingface.co/gate-institute/GATE-VLAP)
- **Original LIBERO**: [https://github.com/Lifelong-Robot-Learning/LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO)
- **Paper**: Coming soon

## Acknowledgments

- **LIBERO Benchmark**: Original dataset by Liu et al. (2023)
- **Segmentation**: Gemini Vision API for semantic action chunking
- **Institution**: [GATE Institute](https://www.gate-ai.eu/en/home/), Sofia, Bulgaria

## Contact

For questions or issues, please contact the [GATE Institute](https://www.gate-ai.eu/en/home/).

---

**Dataset Version**: 1.0  
**Last Updated**: December 2025  
**Maintainer**: [GATE Institute](https://www.gate-ai.eu/en/home/)