diffumatch / shape_data /data_utils.py
daidedou
forgot a few things lol
e321b92
import scipy
import scipy.sparse
import scipy.sparse.linalg
from scipy.io import loadmat
import sys
import os
import os.path as osp
import math
import numpy as np
import open3d as o3d
import potpourri3d as pp3d
import torch
from pathlib import Path
class CorrLoader(object):
def __init__(self, root_dir, data_type='mat'):
self.root_dir = root_dir
self.data_type = data_type
def get_by_names(self, sname0, sname1):
if self.data_type.endswith('mat'):
pmap10 = self._load_mat(osp.join(self.root_dir, f'{sname0}-{sname1}.mat'))
return np.stack((pmap10, np.arange(len(pmap10))), axis=1)
else:
raise RuntimeError(f'Data type {self.data_type} is not supported.')
def _load_mat(self, filepath):
data = loadmat(filepath)
pmap10 = np.squeeze(np.asarray(data['pmap10'], dtype=np.int32))
return pmap10
# https://github.com/RobinMagnet/pyFM/blob/master/pyFM/signatures/HKS_functions.py
def HKS(evals, evects, time_list, scaled=False):
evals_s = np.asarray(evals).flatten()
t_list = np.asarray(time_list).flatten()
coefs = np.exp(-np.outer(t_list, evals_s))
weighted_evects = evects[None, :, :] * coefs[:, None, :]
natural_HKS = np.einsum('tnk,nk->nt', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
return (1 / inv_scaling)[None, :] * natural_HKS
else:
return natural_HKS
def lm_HKS(evals, evects, landmarks, time_list, scaled=False):
evals_s = np.asarray(evals).flatten()
t_list = np.asarray(time_list).flatten()
coefs = np.exp(-np.outer(t_list, evals_s))
weighted_evects = evects[None, landmarks, :] * coefs[:, None, :]
landmarks_HKS = np.einsum('tpk,nk->ptn', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
landmarks_HKS = (1 / inv_scaling)[None, :, None] * landmarks_HKS
return landmarks_HKS.reshape(-1, evects.shape[0]).T
def auto_HKS(evals, evects, num_T, landmarks=None, scaled=True):
abs_ev = sorted(np.abs(evals))
t_list = np.geomspace(4 * np.log(10) / abs_ev[-1], 4 * np.log(10) / abs_ev[1], num_T)
if landmarks is None:
return HKS(abs_ev, evects, t_list, scaled=scaled)
else:
return lm_HKS(abs_ev, evects, landmarks, t_list, scaled=scaled)
# https://github.com/RobinMagnet/pyFM/blob/master/pyFM/signatures/WKS_functions.py
def WKS(evals, evects, energy_list, sigma, scaled=False):
assert sigma > 0, f"Sigma should be positive ! Given value : {sigma}"
evals = np.asarray(evals).flatten()
indices = np.where(evals > 1e-5)[0].flatten()
evals = evals[indices]
evects = evects[:, indices]
e_list = np.asarray(energy_list)
coefs = np.exp(-np.square(e_list[:, None] - np.log(np.abs(evals))[None, :]) / (2 * sigma**2))
weighted_evects = evects[None, :, :] * coefs[:, None, :]
natural_WKS = np.einsum('tnk,nk->nt', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
return (1 / inv_scaling)[None, :] * natural_WKS
else:
return natural_WKS
def lm_WKS(evals, evects, landmarks, energy_list, sigma, scaled=False):
assert sigma > 0, f"Sigma should be positive ! Given value : {sigma}"
evals = np.asarray(evals).flatten()
indices = np.where(evals > 1e-2)[0].flatten()
evals = evals[indices]
evects = evects[:, indices]
e_list = np.asarray(energy_list)
coefs = np.exp(-np.square(e_list[:, None] - np.log(np.abs(evals))[None, :]) / (2 * sigma**2))
weighted_evects = evects[None, landmarks, :] * coefs[:, None, :]
landmarks_WKS = np.einsum('tpk,nk->ptn', weighted_evects, evects)
if scaled:
inv_scaling = coefs.sum(1)
landmarks_WKS = ((1 / inv_scaling)[None, :, None] * landmarks_WKS)
return landmarks_WKS.reshape(-1, evects.shape[0]).T
def auto_WKS(evals, evects, num_E, landmarks=None, scaled=True):
abs_ev = sorted(np.abs(evals))
e_min, e_max = np.log(abs_ev[1]), np.log(abs_ev[-1])
sigma = 7 * (e_max - e_min) / num_E
e_min += 2 * sigma
e_max -= 2 * sigma
energy_list = np.linspace(e_min, e_max, num_E)
if landmarks is None:
return WKS(abs_ev, evects, energy_list, sigma, scaled=scaled)
else:
return lm_WKS(abs_ev, evects, landmarks, energy_list, sigma, scaled=scaled)
def compute_hks(evecs, evals, mass, n_descr=100, subsample_step=5, n_eig=35):
feats = auto_HKS(evals[:n_eig], evecs[:, :n_eig], n_descr, scaled=True)
feats = feats[:, np.arange(0, feats.shape[1], subsample_step)]
feats_norm2 = np.einsum('np,np->p', feats, np.expand_dims(mass, 1) * feats).flatten()
feats /= np.expand_dims(np.sqrt(feats_norm2), 0)
return feats.astype(np.float32)
def compute_wks(evecs, evals, mass, n_descr=100, subsample_step=5, n_eig=35):
feats = auto_WKS(evals[:n_eig], evecs[:, :n_eig], n_descr, scaled=True)
feats = feats[:, np.arange(0, feats.shape[1], subsample_step)]
feats_norm2 = np.einsum('np,np->p', feats, np.expand_dims(mass, 1) * feats).flatten()
feats /= np.expand_dims(np.sqrt(feats_norm2), 0)
return feats.astype(np.float32)
def compute_geodesic_distance(V, F, vindices):
solver = pp3d.MeshHeatMethodDistanceSolver(np.asarray(V, dtype=np.float32), np.asarray(F, dtype=np.int32))
dists = [solver.compute_distance(vid)[vindices] for vid in vindices]
dists = np.stack(dists, axis=0)
assert dists.ndim == 2
return dists.astype(np.float32)
def compute_vertex_normals(vertices, faces):
mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces))
mesh.compute_vertex_normals()
return np.asarray(mesh.vertex_normals, dtype=np.float32)
def compute_surface_area(vertices, faces):
mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces))
return mesh.get_surface_area()
def numpy_to_open3d_mesh(V, F):
# Create an empty TriangleMesh object
mesh = o3d.geometry.TriangleMesh()
# Set vertices
mesh.vertices = o3d.utility.Vector3dVector(V)
# Set triangles
mesh.triangles = o3d.utility.Vector3iVector(F)
return mesh
def load_mesh(filepath, scale=True, return_vnormals=False):
if os.path.splitext(filepath)[1] == ".obj": #Avoid pre process from open3d
V, F = pp3d.read_mesh(filepath)
mesh = numpy_to_open3d_mesh(V, F)
else:
mesh = o3d.io.read_triangle_mesh(filepath)
tmat = np.identity(4, dtype=np.float32)
center = mesh.get_center()
tmat[:3, 3] = -center
if scale:
smat = np.identity(4, dtype=np.float32)
area = mesh.get_surface_area()
smat[:3, :3] = np.identity(3, dtype=np.float32) / math.sqrt(area)
tmat = smat @ tmat
mesh.transform(tmat)
vertices = np.asarray(mesh.vertices, dtype=np.float32)
faces = np.asarray(mesh.triangles, dtype=np.int32)
if return_vnormals:
mesh.compute_vertex_normals()
vnormals = np.asarray(mesh.vertex_normals, dtype=np.float32)
return vertices, faces, vnormals
else:
return vertices, faces
def save_mesh(filepath, vertices, faces):
mesh = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(faces))
o3d.io.write_triangle_mesh(filepath, mesh)
def load_geodist(filepath):
data = loadmat(filepath)
if 'geodist' in data and 'sqrt_area' in data:
geodist = np.asarray(data['geodist'], dtype=np.float32)
sqrt_area = data['sqrt_area'].toarray().flatten()[0]
elif 'G' in data and 'SQRarea' in data:
geodist = np.asarray(data['G'], dtype=np.float32)
sqrt_area = data['SQRarea'].flatten()[0]
else:
raise RuntimeError(f'File {filepath} does not have geodesics data.')
return geodist, sqrt_area
def farthest_point_sampling(points, max_points, random_start=True):
import torch_cluster
if torch.is_tensor(points):
device = points.device
is_batch = points.dim() == 3
if not is_batch:
points = torch.unsqueeze(points, dim=0)
assert points.dim() == 3
B, N, D = points.size()
assert N >= max_points
bindices = torch.flatten(torch.unsqueeze(torch.arange(B), 1).repeat(1, N)).long().to(device)
points = torch.reshape(points, (B * N, D)).float()
sindices = torch_cluster.fps(points, bindices, ratio=float(max_points) / N, random_start=random_start)
if is_batch:
sindices = torch.reshape(sindices, (B, max_points)) - torch.unsqueeze(torch.arange(B), 1).long().to(device) * N
elif isinstance(points, np.ndarray):
device = torch.device('cpu')
is_batch = points.ndim == 3
if not is_batch:
points = np.expand_dims(points, axis=0)
assert points.ndim == 3
B, N, D = points.shape
assert N >= max_points
bindices = np.tile(np.expand_dims(np.arange(B), 1), (1, N)).flatten()
bindices = torch.as_tensor(bindices, device=device).long()
points = torch.as_tensor(np.reshape(points, (B * N, D)), device=device).float()
sindices = torch_cluster.fps(points, bindices, ratio=float(max_points) / N, random_start=random_start)
sindices = sindices.cpu().numpy()
if is_batch:
sindices = np.reshape(sindices, (B, max_points)) - np.expand_dims(np.arange(B), 1) * N
else:
raise NotImplementedError
return sindices
def lstsq(A, B):
assert A.ndim == B.ndim == 2
sols = scipy.linalg.lstsq(A, B)[0]
return sols